Efficient continuous SF6/N2 separation using low-cost and robust metal-organic frameworks composites
Abstract Physisorption presents a promising alternative to cryogenic distillation for capturing the most potent greenhouse gas, SF6, but existing adsorbents face challenges in meeting diverse chemical and engineering concerns. Herein, with insights into in-pore chemistry and industrial process desig...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-025-56031-5 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Physisorption presents a promising alternative to cryogenic distillation for capturing the most potent greenhouse gas, SF6, but existing adsorbents face challenges in meeting diverse chemical and engineering concerns. Herein, with insights into in-pore chemistry and industrial process design, we report a systematic investigation that constructed two low-cost composites pellets (Al(fum)@2%HPC and Al(fum)@5%Kaolin) coupled with an innovative two-stage Vacuum Temperature Swing Adsorption (VTSA) process for the ultra-efficient recovery of low-concentration SF6 from N2. Record-high selectivities (> 2×104) and SF6 dynamic capacities (~ 2.7 mmol/g) were achieved, while exceptional SF6 productivities (~ 58.7 L/kg), yields (~ 96.8%), and recyclability (~ 1000 cycles) were demonstrated in fixed-bed adsorption-desorption experiments under mild regeneration conditions. 2D solid-state NMR/in-situ FTIR, DFT-D binding/diffusion simulation analyses revealed the multi-site binding mode and the ultra-fast diffusion of SF6 within the channels. The proposed VTSA processes successfully met the dual stringent requirements of both environmental protection and electricity equipment operation: the SF6 recovery of 99.91% accompanied with a SF6 purity/working capacity of 99.91%/2.1 mmol/g, which significantly outperformed the industrial employed adsorbent zeolite 13X and showed only 18.7% the energy consumption of the cryogenic distillation. |
---|---|
ISSN: | 2041-1723 |