Microstructure and properties of NiCoCrAlYTa-Cr2O3-Cu-Mo high-temperature wear-resistant coating prepared by APS

To investigate the effect of the spraying process parameters on the properties of NiCoCrAlYTa-Cr2O3-Cu-Mo high-temperature wear-resistant coating, the coating is prepared by atmospheric plasma spray (APS) process based on the orthogonal experiment. The range analysis method is used to study the pri...

Full description

Saved in:
Bibliographic Details
Main Authors: ZHANG Ang, GUO Mengqiu, WANG Changliang, ZHANG Mei, YUE Zhen, WANG Tianying, NIE Zixing, GAO Shen
Format: Article
Language:zho
Published: Journal of Materials Engineering 2025-01-01
Series:Cailiao gongcheng
Subjects:
Online Access:https://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2024.000118
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To investigate the effect of the spraying process parameters on the properties of NiCoCrAlYTa-Cr2O3-Cu-Mo high-temperature wear-resistant coating, the coating is prepared by atmospheric plasma spray (APS) process based on the orthogonal experiment. The range analysis method is used to study the primary and secondary relationships of the process parameters on the microstructure, hardness, and bonding strength of the NiCoCrAlYTa-Cr2O3-Cu-Mo coating, and the spraying process parameters are optimized. The optimized process parameters are that the argon flow rate is 50 L/min, the hydrogen flow rate is 12 L/min, the current is 500 A, and the spraying distance is 100 mm. With the optimized spraying process parameters, the microstructure of the coating is very dense, the porosity is lower than 1%, and the average bonding strength, hardness, and average oxidation speed during 50-100 h at 900 ℃ are 70.7 MPa, 543.7 HV, and 0.07302 g/(m2·h), respectively. In addition, the friction coefficient and wear rate of NiCoCrAlYTa-Cr2O3-Cu-Mo coating are 0.248 and 2.12×10-6 mm3/(N·m) at 800 ℃, exhibiting good friction and wear properties.
ISSN:1001-4381