Decitabine-Induced Changes in Human Myelodysplastic Syndrome Cell Line SKM-1 Are Mediated by FOXO3A Activation
The epigenetic silencing of tumor suppressor genes in myelodysplastic syndromes (MDS) can potentially confer a growth advantage to individual cellular clones. Currently, the recommended treatment for patients with high-risk MDS is the methylation agent decitabine (DAC), a drug that can induce the re...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Journal of Immunology Research |
Online Access: | http://dx.doi.org/10.1155/2017/4302320 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The epigenetic silencing of tumor suppressor genes in myelodysplastic syndromes (MDS) can potentially confer a growth advantage to individual cellular clones. Currently, the recommended treatment for patients with high-risk MDS is the methylation agent decitabine (DAC), a drug that can induce the reexpression of silenced tumor suppressor genes. We investigated the effects of DAC treatment on the myeloid MDS cell line SKM-1 and investigated the role of FOXO3A, a potentially tumor-suppressive transcription factor, by silencing its expression prior to DAC treatment. We found that FOXO3A exists in an inactive, hyperphosphorylated form in SKM-1 cells, but that DAC both induces FOXO3A expression and reactivates the protein by reducing its phosphorylation level. Furthermore, we show that this FOXO3A activation is responsible for the DAC-induced differentiation of SKM-1 cells into monocytes, as well as for SKM-1 cell cycle arrest, apoptosis, and autophagy. Collectively, these results suggest that FOXO3A reactivation may contribute to the therapeutic effects of DAC in MDS. |
---|---|
ISSN: | 2314-8861 2314-7156 |