Inverse Estimates for Nonhomogeneous Backward Heat Problems

We investigate the inverse problem in the nonhomogeneous heat equation involving the recovery of the initial temperature from measurements of the final temperature. This problem is known as the backward heat problem and is severely ill-posed. We show that this problem can be converted into the first...

Full description

Saved in:
Bibliographic Details
Main Authors: Tao Min, Weimin Fu, Qiang Huang
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/529618
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the inverse problem in the nonhomogeneous heat equation involving the recovery of the initial temperature from measurements of the final temperature. This problem is known as the backward heat problem and is severely ill-posed. We show that this problem can be converted into the first Fredholm integral equation, and an algorithm of inversion is given using Tikhonov's regularization method. The genetic algorithm for obtaining the regularization parameter is presented. We also present numerical computations that verify the accuracy of our approximation.
ISSN:1110-757X
1687-0042