Resonant Homoclinic Flips Bifurcation in Principal Eigendirections
A codimension-4 homoclinic bifurcation with one orbit flip and one inclination flip at principal eigenvalue direction resonance is considered. By introducing a local active coordinate system in some small neighborhood of homoclinic orbit, we get the Poincaré return map and the bifurcation equation....
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2013-01-01
|
| Series: | Abstract and Applied Analysis |
| Online Access: | http://dx.doi.org/10.1155/2013/267826 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A codimension-4 homoclinic bifurcation with one orbit flip and one inclination flip at principal eigenvalue direction resonance is considered. By introducing a local active coordinate system in some small neighborhood of homoclinic orbit, we get the Poincaré return map and the bifurcation equation. A detailed investigation produces the number and the existence of 1-homoclinic orbit, 1-periodic orbit, and double 1-periodic orbits. We also locate their bifurcation surfaces in certain regions. |
|---|---|
| ISSN: | 1085-3375 1687-0409 |