A New Hyperbolic Shear Deformation Theory for Bending Analysis of Functionally Graded Plates

Theoretical formulation, Navier’s solutions of rectangular plates based on a new higher order shear deformation model are presented for the static response of functionally graded plates. This theory enforces traction-free boundary conditions at plate surfaces. Shear correction factors are not requir...

Full description

Saved in:
Bibliographic Details
Main Authors: Tahar Hassaine Daouadji, Abdelaziz Hadj Henni, Abdelouahed Tounsi, Adda Bedia El Abbes
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Modelling and Simulation in Engineering
Online Access:http://dx.doi.org/10.1155/2012/159806
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832556198167052288
author Tahar Hassaine Daouadji
Abdelaziz Hadj Henni
Abdelouahed Tounsi
Adda Bedia El Abbes
author_facet Tahar Hassaine Daouadji
Abdelaziz Hadj Henni
Abdelouahed Tounsi
Adda Bedia El Abbes
author_sort Tahar Hassaine Daouadji
collection DOAJ
description Theoretical formulation, Navier’s solutions of rectangular plates based on a new higher order shear deformation model are presented for the static response of functionally graded plates. This theory enforces traction-free boundary conditions at plate surfaces. Shear correction factors are not required because a correct representation of transverse shearing strain is given. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Numerical illustrations concern flexural behavior of FG plates with metal-ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fractions profiles, aspect ratios, and length to thickness ratios. Results are verified with available results in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static bending behavior of functionally graded plates.
format Article
id doaj-art-80b787ca55634316be44192805c994de
institution Kabale University
issn 1687-5591
1687-5605
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Modelling and Simulation in Engineering
spelling doaj-art-80b787ca55634316be44192805c994de2025-02-03T05:46:10ZengWileyModelling and Simulation in Engineering1687-55911687-56052012-01-01201210.1155/2012/159806159806A New Hyperbolic Shear Deformation Theory for Bending Analysis of Functionally Graded PlatesTahar Hassaine Daouadji0Abdelaziz Hadj Henni1Abdelouahed Tounsi2Adda Bedia El Abbes3Departement of Civil Engineering, Ibn Khaldoun University of Tiaret, BP 78 Zaaroura, 14000 Tiaret, AlgeriaDepartement of Civil Engineering, Ibn Khaldoun University of Tiaret, BP 78 Zaaroura, 14000 Tiaret, AlgeriaLaboratoire des Matériaux et Hydrologie, Université de Sidi Bel Abbes, BP 89 Cité Ben M’hidi, 22000 Sidi Bel Abbes, AlgeriaLaboratoire des Matériaux et Hydrologie, Université de Sidi Bel Abbes, BP 89 Cité Ben M’hidi, 22000 Sidi Bel Abbes, AlgeriaTheoretical formulation, Navier’s solutions of rectangular plates based on a new higher order shear deformation model are presented for the static response of functionally graded plates. This theory enforces traction-free boundary conditions at plate surfaces. Shear correction factors are not required because a correct representation of transverse shearing strain is given. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Numerical illustrations concern flexural behavior of FG plates with metal-ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fractions profiles, aspect ratios, and length to thickness ratios. Results are verified with available results in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static bending behavior of functionally graded plates.http://dx.doi.org/10.1155/2012/159806
spellingShingle Tahar Hassaine Daouadji
Abdelaziz Hadj Henni
Abdelouahed Tounsi
Adda Bedia El Abbes
A New Hyperbolic Shear Deformation Theory for Bending Analysis of Functionally Graded Plates
Modelling and Simulation in Engineering
title A New Hyperbolic Shear Deformation Theory for Bending Analysis of Functionally Graded Plates
title_full A New Hyperbolic Shear Deformation Theory for Bending Analysis of Functionally Graded Plates
title_fullStr A New Hyperbolic Shear Deformation Theory for Bending Analysis of Functionally Graded Plates
title_full_unstemmed A New Hyperbolic Shear Deformation Theory for Bending Analysis of Functionally Graded Plates
title_short A New Hyperbolic Shear Deformation Theory for Bending Analysis of Functionally Graded Plates
title_sort new hyperbolic shear deformation theory for bending analysis of functionally graded plates
url http://dx.doi.org/10.1155/2012/159806
work_keys_str_mv AT taharhassainedaouadji anewhyperbolicsheardeformationtheoryforbendinganalysisoffunctionallygradedplates
AT abdelazizhadjhenni anewhyperbolicsheardeformationtheoryforbendinganalysisoffunctionallygradedplates
AT abdelouahedtounsi anewhyperbolicsheardeformationtheoryforbendinganalysisoffunctionallygradedplates
AT addabediaelabbes anewhyperbolicsheardeformationtheoryforbendinganalysisoffunctionallygradedplates
AT taharhassainedaouadji newhyperbolicsheardeformationtheoryforbendinganalysisoffunctionallygradedplates
AT abdelazizhadjhenni newhyperbolicsheardeformationtheoryforbendinganalysisoffunctionallygradedplates
AT abdelouahedtounsi newhyperbolicsheardeformationtheoryforbendinganalysisoffunctionallygradedplates
AT addabediaelabbes newhyperbolicsheardeformationtheoryforbendinganalysisoffunctionallygradedplates