A cone conjecture for log Calabi-Yau surfaces

We consider log Calabi-Yau surfaces $(Y, D)$ with singular boundary. In each deformation type, there is a distinguished surface $(Y_e,D_e)$ such that the mixed Hodge structure on $H_2(Y \setminus D)$ is split. We prove that (1) the action of the automorphism group of $(Y_e,D...

Full description

Saved in:
Bibliographic Details
Main Author: Jennifer Li
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509424000902/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider log Calabi-Yau surfaces $(Y, D)$ with singular boundary. In each deformation type, there is a distinguished surface $(Y_e,D_e)$ such that the mixed Hodge structure on $H_2(Y \setminus D)$ is split. We prove that (1) the action of the automorphism group of $(Y_e,D_e)$ on its nef effective cone admits a rational polyhedral fundamental domain; and (2) the action of the monodromy group on the nef effective cone of a very general surface in the deformation type admits a rational polyhedral fundamental domain. These statements can be viewed as versions of the Morrison cone conjecture for log Calabi–Yau surfaces. In addition, if the number of components of D is no greater than six, we show that the nef cone of $Y_e$ is rational polyhedral and describe it explicitly. This provides infinite series of new examples of Mori Dream Spaces.
ISSN:2050-5094