Microscopic and Spectroscopic Investigation of (AlxGa1–X)2O3 Films: Unraveling the Impact of Growth Orientation and Aluminum Content

Abstract (AlxGa1–x)2O3 is an ultrawide‐bandgap semiconductor with a high critical electric field for next‐generation high‐power transistors and deep‐ultraviolet photodetectors. While (010)‐(AlxGa1–x)2O3 films have been studied, the recent availability of (100), (2¯01)‐Ga2O3 substrates have developed...

Full description

Saved in:
Bibliographic Details
Main Authors: Jith Sarker, Prachi Garg, Abrar Rauf, Ahsiur Rahman Nirjhar, Hsien‐Lien Huang, Menglin Zhu, A. F. M. Anhar Uddin Bhuiyan, Lingyu Meng, Hongping Zhao, Jinwoo Hwang, Eric Osei‐Agyemang, Saquib Ahmed, Baishakhi Mazumder
Format: Article
Language:English
Published: Wiley-VCH 2025-01-01
Series:Advanced Materials Interfaces
Subjects:
Online Access:https://doi.org/10.1002/admi.202301016
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832593480624373760
author Jith Sarker
Prachi Garg
Abrar Rauf
Ahsiur Rahman Nirjhar
Hsien‐Lien Huang
Menglin Zhu
A. F. M. Anhar Uddin Bhuiyan
Lingyu Meng
Hongping Zhao
Jinwoo Hwang
Eric Osei‐Agyemang
Saquib Ahmed
Baishakhi Mazumder
author_facet Jith Sarker
Prachi Garg
Abrar Rauf
Ahsiur Rahman Nirjhar
Hsien‐Lien Huang
Menglin Zhu
A. F. M. Anhar Uddin Bhuiyan
Lingyu Meng
Hongping Zhao
Jinwoo Hwang
Eric Osei‐Agyemang
Saquib Ahmed
Baishakhi Mazumder
author_sort Jith Sarker
collection DOAJ
description Abstract (AlxGa1–x)2O3 is an ultrawide‐bandgap semiconductor with a high critical electric field for next‐generation high‐power transistors and deep‐ultraviolet photodetectors. While (010)‐(AlxGa1–x)2O3 films have been studied, the recent availability of (100), (2¯01)‐Ga2O3 substrates have developed interest in (100), (2¯01)‐(AlxGa1–x)2O3 films. In this work, an investigation of microscopic and spectroscopic characteristics of (100), (2¯01), (010)–(AlxGa1–x)2O3 films is conducted. A combination of scanning transmission electron microscopy, atom probe tomography (APT), and first‐principle calculations (DFT) is performed. The findings reveal consistent in‐plane chemical homogeneity in lower aluminum content (x = 0.2) films. However, higher aluminum content (x = 0.5), showed inhomogeneity in (100), (010)–(AlxGa1–x)2O3 films attributed to their spectroscopic properties. The study expanded APT's capabilities to determine Ga─O and Al─O bond lengths by mapping their ion‐pair separations in detector space. The change in ion‐pair separations is consistent with varying orientations, irrespective of aluminum content. DFT also demonstrated a similar trend, concluding that Ga─O and Al─O bonding energy has an inverse relationship with their bond length as crystallographic orientations vary. This systematic study of growth orientation dependence of (AlxGa1–x)2O3 films’ microscopic and spectroscopic properties will guide the development of new (100) and (2¯01)‐(AlxGa1–x)2O3 along with existing (010)–(AlxGa1–x)2O3 films.
format Article
id doaj-art-80526d14dae9443dbf292f9054ce58e3
institution Kabale University
issn 2196-7350
language English
publishDate 2025-01-01
publisher Wiley-VCH
record_format Article
series Advanced Materials Interfaces
spelling doaj-art-80526d14dae9443dbf292f9054ce58e32025-01-20T13:56:18ZengWiley-VCHAdvanced Materials Interfaces2196-73502025-01-01122n/an/a10.1002/admi.202301016Microscopic and Spectroscopic Investigation of (AlxGa1–X)2O3 Films: Unraveling the Impact of Growth Orientation and Aluminum ContentJith Sarker0Prachi Garg1Abrar Rauf2Ahsiur Rahman Nirjhar3Hsien‐Lien Huang4Menglin Zhu5A. F. M. Anhar Uddin Bhuiyan6Lingyu Meng7Hongping Zhao8Jinwoo Hwang9Eric Osei‐Agyemang10Saquib Ahmed11Baishakhi Mazumder12Department of Materials Design and Innovation University at Buffalo‐SUNY Buffalo NY 14260 USADepartment of Materials Design and Innovation University at Buffalo‐SUNY Buffalo NY 14260 USADepartment of Materials and Metallurgical Engineering Bangladesh University of Engineering and Technology Dhaka 1000 BangladeshDepartment of Materials and Metallurgical Engineering Bangladesh University of Engineering and Technology Dhaka 1000 BangladeshDepartment of Materials Science and Engineering The Ohio State University Columbus OH 43210 USADepartment of Materials Science and Engineering The Ohio State University Columbus OH 43210 USADepartment of Electrical and Computer Engineering The Ohio State University Columbus OH 43210 USADepartment of Electrical and Computer Engineering The Ohio State University Columbus OH 43210 USADepartment of Materials Science and Engineering The Ohio State University Columbus OH 43210 USADepartment of Materials Science and Engineering The Ohio State University Columbus OH 43210 USADepartment of Materials Design and Innovation University at Buffalo‐SUNY Buffalo NY 14260 USADepartment of Engineering Technology SUNY Buffalo State University Buffalo NY 14222 USADepartment of Materials Design and Innovation University at Buffalo‐SUNY Buffalo NY 14260 USAAbstract (AlxGa1–x)2O3 is an ultrawide‐bandgap semiconductor with a high critical electric field for next‐generation high‐power transistors and deep‐ultraviolet photodetectors. While (010)‐(AlxGa1–x)2O3 films have been studied, the recent availability of (100), (2¯01)‐Ga2O3 substrates have developed interest in (100), (2¯01)‐(AlxGa1–x)2O3 films. In this work, an investigation of microscopic and spectroscopic characteristics of (100), (2¯01), (010)–(AlxGa1–x)2O3 films is conducted. A combination of scanning transmission electron microscopy, atom probe tomography (APT), and first‐principle calculations (DFT) is performed. The findings reveal consistent in‐plane chemical homogeneity in lower aluminum content (x = 0.2) films. However, higher aluminum content (x = 0.5), showed inhomogeneity in (100), (010)–(AlxGa1–x)2O3 films attributed to their spectroscopic properties. The study expanded APT's capabilities to determine Ga─O and Al─O bond lengths by mapping their ion‐pair separations in detector space. The change in ion‐pair separations is consistent with varying orientations, irrespective of aluminum content. DFT also demonstrated a similar trend, concluding that Ga─O and Al─O bonding energy has an inverse relationship with their bond length as crystallographic orientations vary. This systematic study of growth orientation dependence of (AlxGa1–x)2O3 films’ microscopic and spectroscopic properties will guide the development of new (100) and (2¯01)‐(AlxGa1–x)2O3 along with existing (010)–(AlxGa1–x)2O3 films.https://doi.org/10.1002/admi.202301016atom probe tomographyfirst principle calculationsemiconductorultrawide‐bandgap material
spellingShingle Jith Sarker
Prachi Garg
Abrar Rauf
Ahsiur Rahman Nirjhar
Hsien‐Lien Huang
Menglin Zhu
A. F. M. Anhar Uddin Bhuiyan
Lingyu Meng
Hongping Zhao
Jinwoo Hwang
Eric Osei‐Agyemang
Saquib Ahmed
Baishakhi Mazumder
Microscopic and Spectroscopic Investigation of (AlxGa1–X)2O3 Films: Unraveling the Impact of Growth Orientation and Aluminum Content
Advanced Materials Interfaces
atom probe tomography
first principle calculation
semiconductor
ultrawide‐bandgap material
title Microscopic and Spectroscopic Investigation of (AlxGa1–X)2O3 Films: Unraveling the Impact of Growth Orientation and Aluminum Content
title_full Microscopic and Spectroscopic Investigation of (AlxGa1–X)2O3 Films: Unraveling the Impact of Growth Orientation and Aluminum Content
title_fullStr Microscopic and Spectroscopic Investigation of (AlxGa1–X)2O3 Films: Unraveling the Impact of Growth Orientation and Aluminum Content
title_full_unstemmed Microscopic and Spectroscopic Investigation of (AlxGa1–X)2O3 Films: Unraveling the Impact of Growth Orientation and Aluminum Content
title_short Microscopic and Spectroscopic Investigation of (AlxGa1–X)2O3 Films: Unraveling the Impact of Growth Orientation and Aluminum Content
title_sort microscopic and spectroscopic investigation of alxga1 x 2o3 films unraveling the impact of growth orientation and aluminum content
topic atom probe tomography
first principle calculation
semiconductor
ultrawide‐bandgap material
url https://doi.org/10.1002/admi.202301016
work_keys_str_mv AT jithsarker microscopicandspectroscopicinvestigationofalxga1x2o3filmsunravelingtheimpactofgrowthorientationandaluminumcontent
AT prachigarg microscopicandspectroscopicinvestigationofalxga1x2o3filmsunravelingtheimpactofgrowthorientationandaluminumcontent
AT abrarrauf microscopicandspectroscopicinvestigationofalxga1x2o3filmsunravelingtheimpactofgrowthorientationandaluminumcontent
AT ahsiurrahmannirjhar microscopicandspectroscopicinvestigationofalxga1x2o3filmsunravelingtheimpactofgrowthorientationandaluminumcontent
AT hsienlienhuang microscopicandspectroscopicinvestigationofalxga1x2o3filmsunravelingtheimpactofgrowthorientationandaluminumcontent
AT menglinzhu microscopicandspectroscopicinvestigationofalxga1x2o3filmsunravelingtheimpactofgrowthorientationandaluminumcontent
AT afmanharuddinbhuiyan microscopicandspectroscopicinvestigationofalxga1x2o3filmsunravelingtheimpactofgrowthorientationandaluminumcontent
AT lingyumeng microscopicandspectroscopicinvestigationofalxga1x2o3filmsunravelingtheimpactofgrowthorientationandaluminumcontent
AT hongpingzhao microscopicandspectroscopicinvestigationofalxga1x2o3filmsunravelingtheimpactofgrowthorientationandaluminumcontent
AT jinwoohwang microscopicandspectroscopicinvestigationofalxga1x2o3filmsunravelingtheimpactofgrowthorientationandaluminumcontent
AT ericoseiagyemang microscopicandspectroscopicinvestigationofalxga1x2o3filmsunravelingtheimpactofgrowthorientationandaluminumcontent
AT saquibahmed microscopicandspectroscopicinvestigationofalxga1x2o3filmsunravelingtheimpactofgrowthorientationandaluminumcontent
AT baishakhimazumder microscopicandspectroscopicinvestigationofalxga1x2o3filmsunravelingtheimpactofgrowthorientationandaluminumcontent