A presentation of the torus-equivariant quantum K-theory ring of flag manifolds of type A, Part II: quantum double Grothendieck polynomials

In our previous paper, we gave a presentation of the torus-equivariant quantum K-theory ring $QK_{H}(Fl_{n+1})$ of the (full) flag manifold $Fl_{n+1}$ of type $A_{n}$ as a quotient of a polynomial ring by an explicit ideal. In this paper, we prove that quantum double Grothendiec...

Full description

Saved in:
Bibliographic Details
Main Authors: Toshiaki Maeno, Satoshi Naito, Daisuke Sagaki
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509424001476/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832582242230075392
author Toshiaki Maeno
Satoshi Naito
Daisuke Sagaki
author_facet Toshiaki Maeno
Satoshi Naito
Daisuke Sagaki
author_sort Toshiaki Maeno
collection DOAJ
description In our previous paper, we gave a presentation of the torus-equivariant quantum K-theory ring $QK_{H}(Fl_{n+1})$ of the (full) flag manifold $Fl_{n+1}$ of type $A_{n}$ as a quotient of a polynomial ring by an explicit ideal. In this paper, we prove that quantum double Grothendieck polynomials, introduced by Lenart-Maeno, represent the corresponding (opposite) Schubert classes in the quantum K-theory ring $QK_{H}(Fl_{n+1})$ under this presentation. The main ingredient in our proof is an explicit formula expressing the semi-infinite Schubert class associated to the longest element of the finite Weyl group, which is proved by making use of the general Chevalley formula for the torus-equivariant K-group of the semi-infinite flag manifold associated to $SL_{n+1}(\mathbb {C})$ .
format Article
id doaj-art-8009e591e0d0472d866f2e24b203d4cc
institution Kabale University
issn 2050-5094
language English
publishDate 2025-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj-art-8009e591e0d0472d866f2e24b203d4cc2025-01-30T05:12:53ZengCambridge University PressForum of Mathematics, Sigma2050-50942025-01-011310.1017/fms.2024.147A presentation of the torus-equivariant quantum K-theory ring of flag manifolds of type A, Part II: quantum double Grothendieck polynomialsToshiaki Maeno0Satoshi Naito1Daisuke Sagaki2https://orcid.org/0000-0002-9320-8147Department of Mathematics, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, 468-8502, Japan; E-mail:Department of Mathematics, Institute of Science Tokyo, 2-12-1 Oh-okayama, Meguro-ku, Tokyo, 152-8551, Japan; E-mail:Department of Mathematics, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, JapanIn our previous paper, we gave a presentation of the torus-equivariant quantum K-theory ring $QK_{H}(Fl_{n+1})$ of the (full) flag manifold $Fl_{n+1}$ of type $A_{n}$ as a quotient of a polynomial ring by an explicit ideal. In this paper, we prove that quantum double Grothendieck polynomials, introduced by Lenart-Maeno, represent the corresponding (opposite) Schubert classes in the quantum K-theory ring $QK_{H}(Fl_{n+1})$ under this presentation. The main ingredient in our proof is an explicit formula expressing the semi-infinite Schubert class associated to the longest element of the finite Weyl group, which is proved by making use of the general Chevalley formula for the torus-equivariant K-group of the semi-infinite flag manifold associated to $SL_{n+1}(\mathbb {C})$ .https://www.cambridge.org/core/product/identifier/S2050509424001476/type/journal_article14N1514N3514M1505E1405E05
spellingShingle Toshiaki Maeno
Satoshi Naito
Daisuke Sagaki
A presentation of the torus-equivariant quantum K-theory ring of flag manifolds of type A, Part II: quantum double Grothendieck polynomials
Forum of Mathematics, Sigma
14N15
14N35
14M15
05E14
05E05
title A presentation of the torus-equivariant quantum K-theory ring of flag manifolds of type A, Part II: quantum double Grothendieck polynomials
title_full A presentation of the torus-equivariant quantum K-theory ring of flag manifolds of type A, Part II: quantum double Grothendieck polynomials
title_fullStr A presentation of the torus-equivariant quantum K-theory ring of flag manifolds of type A, Part II: quantum double Grothendieck polynomials
title_full_unstemmed A presentation of the torus-equivariant quantum K-theory ring of flag manifolds of type A, Part II: quantum double Grothendieck polynomials
title_short A presentation of the torus-equivariant quantum K-theory ring of flag manifolds of type A, Part II: quantum double Grothendieck polynomials
title_sort presentation of the torus equivariant quantum k theory ring of flag manifolds of type a part ii quantum double grothendieck polynomials
topic 14N15
14N35
14M15
05E14
05E05
url https://www.cambridge.org/core/product/identifier/S2050509424001476/type/journal_article
work_keys_str_mv AT toshiakimaeno apresentationofthetorusequivariantquantumktheoryringofflagmanifoldsoftypeapartiiquantumdoublegrothendieckpolynomials
AT satoshinaito apresentationofthetorusequivariantquantumktheoryringofflagmanifoldsoftypeapartiiquantumdoublegrothendieckpolynomials
AT daisukesagaki apresentationofthetorusequivariantquantumktheoryringofflagmanifoldsoftypeapartiiquantumdoublegrothendieckpolynomials
AT toshiakimaeno presentationofthetorusequivariantquantumktheoryringofflagmanifoldsoftypeapartiiquantumdoublegrothendieckpolynomials
AT satoshinaito presentationofthetorusequivariantquantumktheoryringofflagmanifoldsoftypeapartiiquantumdoublegrothendieckpolynomials
AT daisukesagaki presentationofthetorusequivariantquantumktheoryringofflagmanifoldsoftypeapartiiquantumdoublegrothendieckpolynomials