A presentation of the torus-equivariant quantum K-theory ring of flag manifolds of type A, Part II: quantum double Grothendieck polynomials

In our previous paper, we gave a presentation of the torus-equivariant quantum K-theory ring $QK_{H}(Fl_{n+1})$ of the (full) flag manifold $Fl_{n+1}$ of type $A_{n}$ as a quotient of a polynomial ring by an explicit ideal. In this paper, we prove that quantum double Grothendiec...

Full description

Saved in:
Bibliographic Details
Main Authors: Toshiaki Maeno, Satoshi Naito, Daisuke Sagaki
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509424001476/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In our previous paper, we gave a presentation of the torus-equivariant quantum K-theory ring $QK_{H}(Fl_{n+1})$ of the (full) flag manifold $Fl_{n+1}$ of type $A_{n}$ as a quotient of a polynomial ring by an explicit ideal. In this paper, we prove that quantum double Grothendieck polynomials, introduced by Lenart-Maeno, represent the corresponding (opposite) Schubert classes in the quantum K-theory ring $QK_{H}(Fl_{n+1})$ under this presentation. The main ingredient in our proof is an explicit formula expressing the semi-infinite Schubert class associated to the longest element of the finite Weyl group, which is proved by making use of the general Chevalley formula for the torus-equivariant K-group of the semi-infinite flag manifold associated to $SL_{n+1}(\mathbb {C})$ .
ISSN:2050-5094