Nanoporous Carbon Coatings Direct Li Electrodeposition Morphology and Performance in Li Metal Anode Batteries
Li metal anodes could significantly improve battery energy density. However, Li generally electrodeposits in poorly controlled morphology, leading to safety and performance problems. One factor that controls Li anode performance and electrodeposition morphology is the nature of the electrolyte–curre...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Batteries |
Subjects: | |
Online Access: | https://www.mdpi.com/2313-0105/11/1/10 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832589126322356224 |
---|---|
author | Katharine L. Harrison Subrahmanyam Goriparti Daniel M. Long Rachel I. Martin Benjamin Warren Laura C. Merrill Matthaeus A. Wolak Alexander Sananes Michael P. Siegal |
author_facet | Katharine L. Harrison Subrahmanyam Goriparti Daniel M. Long Rachel I. Martin Benjamin Warren Laura C. Merrill Matthaeus A. Wolak Alexander Sananes Michael P. Siegal |
author_sort | Katharine L. Harrison |
collection | DOAJ |
description | Li metal anodes could significantly improve battery energy density. However, Li generally electrodeposits in poorly controlled morphology, leading to safety and performance problems. One factor that controls Li anode performance and electrodeposition morphology is the nature of the electrolyte–current collector interface. Herein, we modify the Cu current collector interface by depositing precisely controlled nanoporous carbon (NPC) coatings using pulsed laser deposition to develop an understanding of how NPC coating density and thickness impact Li electrodeposition. We find that NPC density and thickness guide Li morphological evolution differently and dictate whether Li deposits at the NPC-Cu or NPC-electrolyte interface. NPC coatings generally lower overpotential for Li electrodeposition, though thicker NPC coatings limit kinetics when cycling at a high rate. Lower-density NPC enables the highest Coulombic efficiency (CE) during calendar aging tests, and higher-density NPC enables the highest CE during cycling tests. |
format | Article |
id | doaj-art-7ecd884d479a4414bd26c7b279cd9881 |
institution | Kabale University |
issn | 2313-0105 |
language | English |
publishDate | 2024-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Batteries |
spelling | doaj-art-7ecd884d479a4414bd26c7b279cd98812025-01-24T13:22:24ZengMDPI AGBatteries2313-01052024-12-011111010.3390/batteries11010010Nanoporous Carbon Coatings Direct Li Electrodeposition Morphology and Performance in Li Metal Anode BatteriesKatharine L. Harrison0Subrahmanyam Goriparti1Daniel M. Long2Rachel I. Martin3Benjamin Warren4Laura C. Merrill5Matthaeus A. Wolak6Alexander Sananes7Michael P. Siegal8Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM 87123, USANanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM 87123, USACenter for Integrated Nanotechnology, Sandia National Laboratories, Albuquerque, NM 87123, USANanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM 87123, USANanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM 87123, USANanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM 87123, USANanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM 87123, USANanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM 87123, USANanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM 87123, USALi metal anodes could significantly improve battery energy density. However, Li generally electrodeposits in poorly controlled morphology, leading to safety and performance problems. One factor that controls Li anode performance and electrodeposition morphology is the nature of the electrolyte–current collector interface. Herein, we modify the Cu current collector interface by depositing precisely controlled nanoporous carbon (NPC) coatings using pulsed laser deposition to develop an understanding of how NPC coating density and thickness impact Li electrodeposition. We find that NPC density and thickness guide Li morphological evolution differently and dictate whether Li deposits at the NPC-Cu or NPC-electrolyte interface. NPC coatings generally lower overpotential for Li electrodeposition, though thicker NPC coatings limit kinetics when cycling at a high rate. Lower-density NPC enables the highest Coulombic efficiency (CE) during calendar aging tests, and higher-density NPC enables the highest CE during cycling tests.https://www.mdpi.com/2313-0105/11/1/10batterieslithium metal anodepulsed laser depositiongrapheneartificial solid electrolyte interphase |
spellingShingle | Katharine L. Harrison Subrahmanyam Goriparti Daniel M. Long Rachel I. Martin Benjamin Warren Laura C. Merrill Matthaeus A. Wolak Alexander Sananes Michael P. Siegal Nanoporous Carbon Coatings Direct Li Electrodeposition Morphology and Performance in Li Metal Anode Batteries Batteries batteries lithium metal anode pulsed laser deposition graphene artificial solid electrolyte interphase |
title | Nanoporous Carbon Coatings Direct Li Electrodeposition Morphology and Performance in Li Metal Anode Batteries |
title_full | Nanoporous Carbon Coatings Direct Li Electrodeposition Morphology and Performance in Li Metal Anode Batteries |
title_fullStr | Nanoporous Carbon Coatings Direct Li Electrodeposition Morphology and Performance in Li Metal Anode Batteries |
title_full_unstemmed | Nanoporous Carbon Coatings Direct Li Electrodeposition Morphology and Performance in Li Metal Anode Batteries |
title_short | Nanoporous Carbon Coatings Direct Li Electrodeposition Morphology and Performance in Li Metal Anode Batteries |
title_sort | nanoporous carbon coatings direct li electrodeposition morphology and performance in li metal anode batteries |
topic | batteries lithium metal anode pulsed laser deposition graphene artificial solid electrolyte interphase |
url | https://www.mdpi.com/2313-0105/11/1/10 |
work_keys_str_mv | AT katharinelharrison nanoporouscarboncoatingsdirectlielectrodepositionmorphologyandperformanceinlimetalanodebatteries AT subrahmanyamgoriparti nanoporouscarboncoatingsdirectlielectrodepositionmorphologyandperformanceinlimetalanodebatteries AT danielmlong nanoporouscarboncoatingsdirectlielectrodepositionmorphologyandperformanceinlimetalanodebatteries AT rachelimartin nanoporouscarboncoatingsdirectlielectrodepositionmorphologyandperformanceinlimetalanodebatteries AT benjaminwarren nanoporouscarboncoatingsdirectlielectrodepositionmorphologyandperformanceinlimetalanodebatteries AT lauracmerrill nanoporouscarboncoatingsdirectlielectrodepositionmorphologyandperformanceinlimetalanodebatteries AT matthaeusawolak nanoporouscarboncoatingsdirectlielectrodepositionmorphologyandperformanceinlimetalanodebatteries AT alexandersananes nanoporouscarboncoatingsdirectlielectrodepositionmorphologyandperformanceinlimetalanodebatteries AT michaelpsiegal nanoporouscarboncoatingsdirectlielectrodepositionmorphologyandperformanceinlimetalanodebatteries |