Conversion of 10 min Rain Rate Time Series into 1 min Time Series: Theory, Experimental Results, and Application in Satellite Communications
We propose a semi-empirical method—based on a filtered Markov process—to convert 10 min rain rate time series into 1 min time series, i.e., quasi-instantaneous rainfall—the latter to be used as input to the synthetic storm technique, which is a very reliable tool for calculating rain attenuation tim...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/15/2/743 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a semi-empirical method—based on a filtered Markov process—to convert 10 min rain rate time series into 1 min time series, i.e., quasi-instantaneous rainfall—the latter to be used as input to the synthetic storm technique, which is a very reliable tool for calculating rain attenuation time series in satellite communication systems or for estimating runoff, erosion, pollutant transport, and other applications in hydrology. To develop the method, we used a very large data bank of 1 min rain rate time series collected in several sites with different climatic conditions. The experimental and simulated 1 min rain rate time series agree very well. Afterward, we used them to simulate rain attenuation time series at 20.7 GHz, in 35.5° slant paths to geostationary satellites. The two simulated annual rain attenuation probability distributions show very small differences. We conclude that the rain rate conversion method is very reliable. |
---|---|
ISSN: | 2076-3417 |