An Area Rescaling Ansatz and Black Hole Entropy from Loop Quantum Gravity

Considering the possibility of ‘renormalization’ of the gravitational constant on the horizon, leading to a dependence on the level of the associated Chern-Simons theory, a rescaled area spectrum is proposed for the nonrotating black hole horizon in loop quantum gravity. The statistical mechanical c...

Full description

Saved in:
Bibliographic Details
Main Author: Abhishek Majhi
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2019/6570896
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Considering the possibility of ‘renormalization’ of the gravitational constant on the horizon, leading to a dependence on the level of the associated Chern-Simons theory, a rescaled area spectrum is proposed for the nonrotating black hole horizon in loop quantum gravity. The statistical mechanical calculation leading to the entropy provides a unique choice of the rescaling function for which the Bekenstein-Hawking area law is yielded without the need to choose the Barbero-Immirzi parameter (γ). γ is determined, rather than being chosen, by studying the limit in which the ‘renormalized’ gravitational constant on the horizon asymptotically approaches the ‘bare’ value. The possible physical dynamics behind the ‘renormalization’ is discussed.
ISSN:1687-7357
1687-7365