Higher rank elliptic partition functions and multisymmetric elliptic functions

We introduce and investigate a class of glM+1 partition functions which is an extension of the one introduced by Foda-Manabe. We characterize the partition functions by a nested version of Izergin-Korepin analysis, and determine the explicit forms, for each of the rational, trigonometric and ellipti...

Full description

Saved in:
Bibliographic Details
Main Authors: Allan John Gerrard, Kohei Motegi, Kazumitsu Sakai
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:Nuclear Physics B
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S055032132500015X
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832586273734262784
author Allan John Gerrard
Kohei Motegi
Kazumitsu Sakai
author_facet Allan John Gerrard
Kohei Motegi
Kazumitsu Sakai
author_sort Allan John Gerrard
collection DOAJ
description We introduce and investigate a class of glM+1 partition functions which is an extension of the one introduced by Foda-Manabe. We characterize the partition functions by a nested version of Izergin-Korepin analysis, and determine the explicit forms, for each of the rational, trigonometric and elliptic versions. The resulting multisymmetric functions can be regarded as extensions of the rational, trigonometric and elliptic weight functions.
format Article
id doaj-art-7e6d591a9a9046ec98800b29d025c42b
institution Kabale University
issn 0550-3213
language English
publishDate 2025-02-01
publisher Elsevier
record_format Article
series Nuclear Physics B
spelling doaj-art-7e6d591a9a9046ec98800b29d025c42b2025-01-26T05:03:25ZengElsevierNuclear Physics B0550-32132025-02-011011116805Higher rank elliptic partition functions and multisymmetric elliptic functionsAllan John Gerrard0Kohei Motegi1Kazumitsu Sakai2Department of Physics, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan; Corresponding author.Faculty of Marine Technology, Tokyo University of Marine Science and Technology, Etchujima 2-1-6, Koto-Ku, 135-8533, Tokyo, JapanDepartment of Physics, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, JapanWe introduce and investigate a class of glM+1 partition functions which is an extension of the one introduced by Foda-Manabe. We characterize the partition functions by a nested version of Izergin-Korepin analysis, and determine the explicit forms, for each of the rational, trigonometric and elliptic versions. The resulting multisymmetric functions can be regarded as extensions of the rational, trigonometric and elliptic weight functions.http://www.sciencedirect.com/science/article/pii/S055032132500015XIzergin-Korepin analysisPartition functionElliptic weight functionNested Bethe wavefunctionIntegrable lattice model
spellingShingle Allan John Gerrard
Kohei Motegi
Kazumitsu Sakai
Higher rank elliptic partition functions and multisymmetric elliptic functions
Nuclear Physics B
Izergin-Korepin analysis
Partition function
Elliptic weight function
Nested Bethe wavefunction
Integrable lattice model
title Higher rank elliptic partition functions and multisymmetric elliptic functions
title_full Higher rank elliptic partition functions and multisymmetric elliptic functions
title_fullStr Higher rank elliptic partition functions and multisymmetric elliptic functions
title_full_unstemmed Higher rank elliptic partition functions and multisymmetric elliptic functions
title_short Higher rank elliptic partition functions and multisymmetric elliptic functions
title_sort higher rank elliptic partition functions and multisymmetric elliptic functions
topic Izergin-Korepin analysis
Partition function
Elliptic weight function
Nested Bethe wavefunction
Integrable lattice model
url http://www.sciencedirect.com/science/article/pii/S055032132500015X
work_keys_str_mv AT allanjohngerrard higherrankellipticpartitionfunctionsandmultisymmetricellipticfunctions
AT koheimotegi higherrankellipticpartitionfunctionsandmultisymmetricellipticfunctions
AT kazumitsusakai higherrankellipticpartitionfunctionsandmultisymmetricellipticfunctions