A Novel BBO Algorithm Based on Local Search and Nonuniform Variation for Iris Classification

In order to improve the iris classification rate, a novel biogeography-based optimization algorithm (NBBO) based on local search and nonuniform variation was proposed in this paper. Firstly, the linear migration model was replaced by a hyperbolic cotangent model which was closer to the natural law....

Full description

Saved in:
Bibliographic Details
Main Authors: Lisheng Wei, Ning Wang, Huacai Lu
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2021/6694695
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to improve the iris classification rate, a novel biogeography-based optimization algorithm (NBBO) based on local search and nonuniform variation was proposed in this paper. Firstly, the linear migration model was replaced by a hyperbolic cotangent model which was closer to the natural law. And, the local search strategy was added to traditional BBO algorithm migration operation to enhance the global search ability of the algorithm. Then, the nonuniform variation was introduced to enhance the algorithm in the later iteration. The algorithm could achieve a stronger iris classifier by lifting weaker similarity classifiers during the training stage. On this base, the convergence condition of NBBO was proposed by using the Markov chain strategy. Finally, simulation results were given to demonstrate the effectiveness and efficiency of the proposed iris classification method.
ISSN:1076-2787
1099-0526