Association Analysis of Reactive Oxygen Species-Hypertension Genes Discovered by Literature Mining

Oxidative stress, which results in an excessive product of reactive oxygen species (ROS), is one of the fundamental mechanisms of the development of hypertension. In the vascular system, ROS have physical and pathophysiological roles in vascular remodeling and endothelial dysfunction. In this study,...

Full description

Saved in:
Bibliographic Details
Main Authors: Ji Eun Lim, Kyung-Won Hong, Hyun-Seok Jin, Bermseok Oh
Format: Article
Language:English
Published: BioMed Central 2012-12-01
Series:Genomics & Informatics
Subjects:
Online Access:http://genominfo.org/upload/pdf/gni-10-244.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oxidative stress, which results in an excessive product of reactive oxygen species (ROS), is one of the fundamental mechanisms of the development of hypertension. In the vascular system, ROS have physical and pathophysiological roles in vascular remodeling and endothelial dysfunction. In this study, ROS-hypertension-related genes were collected by the biological literature-mining tools, such as SciMiner and gene2pubmed, in order to identify the genes that would cause hypertension through ROS. Further, single nucleotide polymorphisms (SNPs) located within these gene regions were examined statistically for their association with hypertension in 6,419 Korean individuals, and pathway enrichment analysis using the associated genes was performed. The 2,945 SNPs of 237 ROS-hypertension genes were analyzed, and 68 genes were significantly associated with hypertension (p < 0.05). The most significant SNP was rs2889611 within MAPK8 (p = 2.70 × 10-5; odds ratio, 0.82; confidence interval, 0.75 to 0.90). This study demonstrates that a text mining approach combined with association analysis may be useful to identify the candidate genes that cause hypertension through ROS or oxidative stress.
ISSN:1598-866X
2234-0742