Nonlinear eigenvalue problems in Sobolev spaces with variable exponent
We study the boundary value problem -div((|∇u|p1(x)-2+|∇u|p2(x)-2)∇u)=f(x,u) in Ω, u=0 on ∂Ω, where Ω is a smooth bounded domain in ℝN. We focus on the cases when f±(x, u)=±(-λ|u|m(x)-2u+|u|q(x)-2u), where m(x)≔max{p1(x),p2(x)}<q(x)<N⋅m(x)N-m(x) for any x∈Ω̅. In the first case we show th...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2006-01-01
|
Series: | Journal of Function Spaces and Applications |
Online Access: | http://dx.doi.org/10.1155/2006/515496 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832561096723005440 |
---|---|
author | Teodora-Liliana Dinu |
author_facet | Teodora-Liliana Dinu |
author_sort | Teodora-Liliana Dinu |
collection | DOAJ |
description | We study the boundary value problem -div((|∇u|p1(x)-2+|∇u|p2(x)-2)∇u)=f(x,u) in Ω, u=0 on ∂Ω, where Ω is a smooth bounded domain in ℝN. We focus on the cases when f±(x, u)=±(-λ|u|m(x)-2u+|u|q(x)-2u), where m(x)≔max{p1(x),p2(x)}<q(x)<N⋅m(x)N-m(x) for any x∈Ω̅. In the first case we show the existence of infinitely many weak solutions for any λ>0. In the second case we prove that if λ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a ℤ2-symmetric version for even functionals of the Mountain Pass Lemma and some adequate variational methods. |
format | Article |
id | doaj-art-7e46695bec8e440cbc19281d3da08b3c |
institution | Kabale University |
issn | 0972-6802 |
language | English |
publishDate | 2006-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Function Spaces and Applications |
spelling | doaj-art-7e46695bec8e440cbc19281d3da08b3c2025-02-03T01:25:59ZengWileyJournal of Function Spaces and Applications0972-68022006-01-014322524210.1155/2006/515496Nonlinear eigenvalue problems in Sobolev spaces with variable exponentTeodora-Liliana Dinu0Department of Mathematics, “Fraţii Buzeşti” College, Bd. Ştirbei–Vodă No. 5, 200409 Craiova, RomaniaWe study the boundary value problem -div((|∇u|p1(x)-2+|∇u|p2(x)-2)∇u)=f(x,u) in Ω, u=0 on ∂Ω, where Ω is a smooth bounded domain in ℝN. We focus on the cases when f±(x, u)=±(-λ|u|m(x)-2u+|u|q(x)-2u), where m(x)≔max{p1(x),p2(x)}<q(x)<N⋅m(x)N-m(x) for any x∈Ω̅. In the first case we show the existence of infinitely many weak solutions for any λ>0. In the second case we prove that if λ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a ℤ2-symmetric version for even functionals of the Mountain Pass Lemma and some adequate variational methods.http://dx.doi.org/10.1155/2006/515496 |
spellingShingle | Teodora-Liliana Dinu Nonlinear eigenvalue problems in Sobolev spaces with variable exponent Journal of Function Spaces and Applications |
title | Nonlinear eigenvalue problems in Sobolev spaces with variable exponent |
title_full | Nonlinear eigenvalue problems in Sobolev spaces with variable exponent |
title_fullStr | Nonlinear eigenvalue problems in Sobolev spaces with variable exponent |
title_full_unstemmed | Nonlinear eigenvalue problems in Sobolev spaces with variable exponent |
title_short | Nonlinear eigenvalue problems in Sobolev spaces with variable exponent |
title_sort | nonlinear eigenvalue problems in sobolev spaces with variable exponent |
url | http://dx.doi.org/10.1155/2006/515496 |
work_keys_str_mv | AT teodoralilianadinu nonlineareigenvalueproblemsinsobolevspaceswithvariableexponent |