The Potential for a GPU-Like Overlay Architecture for FPGAs

We propose a soft processor programming model and architecture inspired by graphics processing units (GPUs) that are well-matched to the strengths of FPGAs, namely, highly parallel and pipelinable computation. In particular, our soft processor architecture exploits multithreading, vector operations,...

Full description

Saved in:
Bibliographic Details
Main Authors: Jeffrey Kingyens, J. Gregory Steffan
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:International Journal of Reconfigurable Computing
Online Access:http://dx.doi.org/10.1155/2011/514581
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a soft processor programming model and architecture inspired by graphics processing units (GPUs) that are well-matched to the strengths of FPGAs, namely, highly parallel and pipelinable computation. In particular, our soft processor architecture exploits multithreading, vector operations, and predication to supply a floating-point pipeline of 64 stages via hardware support for up to 256 concurrent thread contexts. The key new contributions of our architecture are mechanisms for managing threads and register files that maximize data-level and instruction-level parallelism while overcoming the challenges of port limitations of FPGA block memories as well as memory and pipeline latency. Through simulation of a system that (i) is programmable via NVIDIA's high-level Cg language, (ii) supports AMD's CTM r5xx GPU ISA, and (iii) is realizable on an XtremeData XD1000 FPGA-based accelerator system, we demonstrate the potential for such a system to achieve 100% utilization of a deeply pipelined floating-point datapath.
ISSN:1687-7195
1687-7209