A Proposed Method of Automating Data Processing for Analysing Data Produced from Eye Tracking and Galvanic Skin Response

The use of eye tracking technology, together with other physiological measurements such as psychogalvanic skin response (GSR) and electroencephalographic (EEG) recordings, provides researchers with information about users’ physiological behavioural responses during their learning process in differen...

Full description

Saved in:
Bibliographic Details
Main Authors: Javier Sáez-García, María Consuelo Sáiz-Manzanares, Raúl Marticorena-Sánchez
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Computers
Subjects:
Online Access:https://www.mdpi.com/2073-431X/13/11/289
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of eye tracking technology, together with other physiological measurements such as psychogalvanic skin response (GSR) and electroencephalographic (EEG) recordings, provides researchers with information about users’ physiological behavioural responses during their learning process in different types of tasks. These devices produce a large volume of data. However, in order to analyse these records, researchers have to process and analyse them using complex statistical and/or machine learning techniques (supervised or unsupervised) that are usually not incorporated into the devices. The objectives of this study were (1) to propose a procedure for processing the extracted data; (2) to address the potential technical challenges and difficulties in processing logs in integrated multichannel technology; and (3) to offer solutions for automating data processing and analysis. A Notebook in Jupyter is proposed with the steps for importing and processing data, as well as for using supervised and unsupervised machine learning algorithms.
ISSN:2073-431X