Multimodal Temporal Knowledge Graph Embedding Method Based on Mixture of Experts for Recommendation
Knowledge-graph-based recommendation aims to provide personalized recommendation services to users based on their historical interaction information, which is of great significance for shopping transaction rates and other aspects. With the rapid growth of online shopping, the knowledge graph constru...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-08-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/15/2496 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Knowledge-graph-based recommendation aims to provide personalized recommendation services to users based on their historical interaction information, which is of great significance for shopping transaction rates and other aspects. With the rapid growth of online shopping, the knowledge graph constructed from users’ historical interaction data now incorporates multiattribute information, including timestamps, images, and textual content. The information of multiple modalities is difficult to effectively utilize due to their different representation structures and spaces. The existing methods attempt to utilize the above information through simple embedding representation and aggregation, but ignore targeted representation learning for information with different attributes and learning effective weights for aggregation. In addition, existing methods are not sufficient for effectively modeling temporal information. In this article, we propose MTR, a knowledge graph recommendation framework based on mixture of experts network. To achieve this goal, we use a mixture-of-experts network to learn targeted representations and weights of different product attributes for effective modeling and utilization. In addition, we effectively model the temporal information during the user shopping process. A thorough experimental study on popular benchmarks validates that MTR can achieve competitive results. |
|---|---|
| ISSN: | 2227-7390 |