SDA-Mask R-CNN: An Advanced Seabed Feature Extraction Network for UUV
This paper proposes a novel SDA-Mask R-CNN framework for precise seabed terrain edge feature extraction from Side-Scan Sonar (SSS) images to enhance Unmanned Underwater Vehicle (UUV) perception and navigation. The developed architecture addresses critical challenges in underwater image analysis, inc...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Journal of Marine Science and Engineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2077-1312/13/5/863 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper proposes a novel SDA-Mask R-CNN framework for precise seabed terrain edge feature extraction from Side-Scan Sonar (SSS) images to enhance Unmanned Underwater Vehicle (UUV) perception and navigation. The developed architecture addresses critical challenges in underwater image analysis, including low segmentation accuracy and ambiguous edge delineation, through three principal innovations. First, we introduce a Structural Synergistic Group-Attention Residual Network (SSGAR-Net) that integrates group convolution with an enhanced convolutional block attention mechanism, complemented by a layer-skipping architecture for optimized information flow and redundancy verification for computational efficiency. Second, a Depth-Weighted Hierarchical Fusion Network (DWHF-Net) incorporates depthwise separable convolution to minimize computational complexity while preserving model performance, which is particularly effective for high-resolution SSS image processing. This module further employs a weighted pyramid architecture to achieve multi-scale feature fusion, significantly improving adaptability to diverse object scales in dynamic underwater environments. Third, an Adaptive Synergistic Mask Optimization (ASMO) strategy systematically enhances mask generation through classification head refinement, adaptive post-processing, and progressive training protocols. Comprehensive experiments demonstrate that our method achieves 0.695 (IoU) segmentation accuracy and 1.0 (AP) edge localization accuracy. The proposed framework shows notable superiority in preserving topological consistency of seabed features, offering a reliable technical framework for underwater navigation and seabed mapping in marine engineering applications. |
|---|---|
| ISSN: | 2077-1312 |