Parameter Calibration Method for Discrete Element Simulation of Soil–Wheat Crop Residues in Saline–Alkali Coastal Land
After wheat harvesting in coastal saline–alkali land, when the straw is returned to the field and the soil is rotary tilled, the lack of reliable discrete element simulation parameter models restricts the optimization and improvement of special tillage and land preparation equipment for saline–alkal...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Agriculture |
Subjects: | |
Online Access: | https://www.mdpi.com/2077-0472/15/2/129 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | After wheat harvesting in coastal saline–alkali land, when the straw is returned to the field and the soil is rotary tilled, the lack of reliable discrete element simulation parameter models restricts the optimization and improvement of special tillage and land preparation equipment for saline–alkali land to some extent. In this study, the Hertz–Mindlin with JKR model was used to calibrate the discrete element simulation parameters. Taking the soil-wheat crop residue mixture’s angle of repose as the test index, four groups of parameters that significantly affect the angle of repose and their optimal value ranges were screened out through the Plackett–Burman test and the steepest ascent test. Then, the Box–Behnken test was conducted to obtain the quadratic regression model of the significant parameters and the angle of repose, and the optimal values of the significant parameters were obtained. The optimal parameter combination was used for simulation tests, and the relative errors between the measured values and the simulation test values of the angle of repose and the wheat residue coverage rate were 0.74% and 1.34%. The reliable parameters provide a theoretical basis for the optimization and improvement of the equipment for soil preparation in saline–alkali land. |
---|---|
ISSN: | 2077-0472 |