ROASMI: accelerating small molecule identification by repurposing retention data

Abstract The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the R...

Full description

Saved in:
Bibliographic Details
Main Authors: Fang-Yuan Sun, Ying-Hao Yin, Hui-Jun Liu, Lu-Na Shen, Xiu-Lin Kang, Gui-Zhong Xin, Li-Fang Liu, Jia-Yi Zheng
Format: Article
Language:English
Published: BMC 2025-02-01
Series:Journal of Cheminformatics
Subjects:
Online Access:https://doi.org/10.1186/s13321-025-00968-8
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification. 
ISSN:1758-2946