Introducing a Rheology Model for Non-Newtonian Drilling Fluids
An API standard drilling fluid was investigated from laminar to turbulent flow conditions using an in-house-built viscometer at speeds from 200 to 1600 RPM. A power-based method was applied to obtain the apparent viscosity and the shear stress of the water-based drilling mud (WBM) in the annulus of...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Geofluids |
Online Access: | http://dx.doi.org/10.1155/2021/1344776 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An API standard drilling fluid was investigated from laminar to turbulent flow conditions using an in-house-built viscometer at speeds from 200 to 1600 RPM. A power-based method was applied to obtain the apparent viscosity and the shear stress of the water-based drilling mud (WBM) in the annulus of the viscometer. Then, a MATLAB optimization program was developed to obtain model parameters for five rheology models integrated in a generalized Herschel-Bulkley-Extended (HBE) model and two widely used 4-parameter models in drilling industry. It is found that the Bingham, Cross, and HBE rheology models have precisely matched the WBM measurements in the viscometer. A generalized Reynolds number was applied to determine the Darcy friction factor although the PL (power law model) and the HB (Herschel-Bulkley model) exhibited a nonrealistic negative shift from the laminar friction factor. |
---|---|
ISSN: | 1468-8115 1468-8123 |