Null Controllability of a Four Stage and Age-Structured Population Dynamics Model
This paper is devoted to study the null controllability properties of a population dynamics model with age structuring and nonlocal boundary conditions. More precisely, we consider a four-stage model with a second derivative with respect to the age variable. The null controllability is related to th...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2021/5546150 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is devoted to study the null controllability properties of a population dynamics model with age structuring and nonlocal boundary conditions. More precisely, we consider a four-stage model with a second derivative with respect to the age variable. The null controllability is related to the extinction of eggs, larvae, and female population. Thus, we estimate a time T to bring eggs, larvae, and female subpopulation density to zero. Our method combines fixed point theorem and Carleman estimate. We end this work with numerical illustrations. |
---|---|
ISSN: | 2314-4629 2314-4785 |