On (<i>i</i>)-Curves in Blowups of <named-content content-type="inline-formula"><inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi mathvariant="bold-italic">r</mi></msup></semantics></math></inline-formula></named-content>
In this paper, we study <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow>...
Saved in:
| Main Authors: | Olivia Dumitrescu, Rick Miranda |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/12/24/3952 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
The Assymptotic Invariants of a Fermat-Type Set of Points in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mn mathvariant="bold">3</mn></msup></semantics></math></inline-formula>
by: Mikołaj Le Van, et al.
Published: (2024-12-01) -
On the Generalized Fractional Convection–Diffusion Equation with an Initial Condition in <inline-formula><math display="inline"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi mathvariant="bold-italic">n</mi></msup></mrow></semantics></math></inline-formula>
by: Chenkuan Li, et al.
Published: (2025-05-01) -
On the Abscissa of Convergence of Laplace–Stieltjes Integrals in the Euclidean Real Vector Space <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>p</mi></msup></semantics></math></inline-formula>
by: Andriy Bandura, et al.
Published: (2025-03-01) -
Symbol-Pair Distances of a Class of Repeated-Root Constacyclic Codes of Length <i>np<sup>s</sup></i> over <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">F</mi><msup><mi>p</mi><mi>m</mi></msup></msub></mrow></semantics></math></inline-formula> and over <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">F</mi><msup><mi>p</mi><mi>m</mi></msup></msub><mo>+</mo><mi>u</mi><msub><mi mathvariant="double-struck">F</mi><msup><mi>p</mi><mi>m</mi></msup></msub></mrow></semantics></math></inline-formula>
by: Wei Zhao, et al.
Published: (2025-04-01) -
Local Well-Posedness of Classical Solutions to the Time-Dependent Ginzburg–Landau Model for Superconductivity in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi mathvariant="bold-italic">n</mi></msup></semantics></math></inline-formula>
by: Jishan Fan, et al.
Published: (2025-05-01)