Nitrogen Cycling in a Norway Spruce Plantation in Denmark — A SOILN Model Application Including Organic N Uptake
A dynamic carbon (C) and nitrogen (N) circulation model, SOILN, was applied and tested on 7�years of control data and 3 years of manipulation data from an experiment involving monthly N addition in a Norway spruce (Picea abies, L. Karst) forest in Denmark. The model includes two pathways for N uptak...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2001-01-01
|
Series: | The Scientific World Journal |
Online Access: | http://dx.doi.org/10.1100/tsw.2001.394 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832555928461770752 |
---|---|
author | Claus Beier Henrik Eckersten Per Gundersen |
author_facet | Claus Beier Henrik Eckersten Per Gundersen |
author_sort | Claus Beier |
collection | DOAJ |
description | A dynamic carbon (C) and nitrogen (N) circulation model, SOILN, was applied and tested on 7�years of control data and 3 years of manipulation data from an experiment involving monthly N addition in a Norway spruce (Picea abies, L. Karst) forest in Denmark. The model includes two pathways for N uptake: (1) as mineral N after mineralisation of organic N, or (2) directly from soil organic matter as amino acids proposed to mimic N uptake by mycorrhiza. The model was parameterised and applied to the data from the control plot both with and without the organic N uptake included. After calibration, the model�s performance was tested against data from the N-addition experiment by comparing model output with measurements. The model reproduced well the overall trends in C and N pools and the N concentrations in soil solutions in the top soil layers whereas discrepancies in soil-solution concentrations in the deeper soil layers are seen. In the control data, the needle-N concentration was well reproduced except for small underestimations in some years because of drought effects not included in the model. In the N-addition experiment, SOILN reproduces the observed changes; in particular, the changes in needle-N concentrations and the overall distribution within the ecosystem of the extra added 3.5 g N m�2 year�1 parallel the observations. When organic N uptake is included, the simulations indicate that in the control plot receiving c. 1.9 g N m�2 year�1, the organic N uptake in average supplies 35% of the total plant N uptake. By addition of an extra 35 kg N ha�1 year�1, the organic N uptake is reduced to 16% of the total N uptake. Generally, inclusion of the pathway for organic N uptake improves model performance compared with observations for both C and N. This is because mineral N uptake alone implies a larger mineralisation rate, leading to bigger concentrations of N in the soil and soil water, bigger N losses, and net loss of c. 100 kg C ha�1 year�1, thereby causing depletion of the organic soil layer. |
format | Article |
id | doaj-art-7b9c56ed31864edeb79670ebf2cb77b8 |
institution | Kabale University |
issn | 1537-744X |
language | English |
publishDate | 2001-01-01 |
publisher | Wiley |
record_format | Article |
series | The Scientific World Journal |
spelling | doaj-art-7b9c56ed31864edeb79670ebf2cb77b82025-02-03T05:46:44ZengWileyThe Scientific World Journal1537-744X2001-01-01139440610.1100/tsw.2001.394Nitrogen Cycling in a Norway Spruce Plantation in Denmark — A SOILN Model Application Including Organic N UptakeClaus Beier0Henrik Eckersten1Per Gundersen2RISO National Laboratory, Roskilde, DenmarkRISO National Laboratory, Roskilde, DenmarkRISO National Laboratory, Roskilde, DenmarkA dynamic carbon (C) and nitrogen (N) circulation model, SOILN, was applied and tested on 7�years of control data and 3 years of manipulation data from an experiment involving monthly N addition in a Norway spruce (Picea abies, L. Karst) forest in Denmark. The model includes two pathways for N uptake: (1) as mineral N after mineralisation of organic N, or (2) directly from soil organic matter as amino acids proposed to mimic N uptake by mycorrhiza. The model was parameterised and applied to the data from the control plot both with and without the organic N uptake included. After calibration, the model�s performance was tested against data from the N-addition experiment by comparing model output with measurements. The model reproduced well the overall trends in C and N pools and the N concentrations in soil solutions in the top soil layers whereas discrepancies in soil-solution concentrations in the deeper soil layers are seen. In the control data, the needle-N concentration was well reproduced except for small underestimations in some years because of drought effects not included in the model. In the N-addition experiment, SOILN reproduces the observed changes; in particular, the changes in needle-N concentrations and the overall distribution within the ecosystem of the extra added 3.5 g N m�2 year�1 parallel the observations. When organic N uptake is included, the simulations indicate that in the control plot receiving c. 1.9 g N m�2 year�1, the organic N uptake in average supplies 35% of the total plant N uptake. By addition of an extra 35 kg N ha�1 year�1, the organic N uptake is reduced to 16% of the total N uptake. Generally, inclusion of the pathway for organic N uptake improves model performance compared with observations for both C and N. This is because mineral N uptake alone implies a larger mineralisation rate, leading to bigger concentrations of N in the soil and soil water, bigger N losses, and net loss of c. 100 kg C ha�1 year�1, thereby causing depletion of the organic soil layer.http://dx.doi.org/10.1100/tsw.2001.394 |
spellingShingle | Claus Beier Henrik Eckersten Per Gundersen Nitrogen Cycling in a Norway Spruce Plantation in Denmark — A SOILN Model Application Including Organic N Uptake The Scientific World Journal |
title | Nitrogen Cycling in a Norway Spruce Plantation in Denmark — A SOILN Model Application Including Organic N Uptake |
title_full | Nitrogen Cycling in a Norway Spruce Plantation in Denmark — A SOILN Model Application Including Organic N Uptake |
title_fullStr | Nitrogen Cycling in a Norway Spruce Plantation in Denmark — A SOILN Model Application Including Organic N Uptake |
title_full_unstemmed | Nitrogen Cycling in a Norway Spruce Plantation in Denmark — A SOILN Model Application Including Organic N Uptake |
title_short | Nitrogen Cycling in a Norway Spruce Plantation in Denmark — A SOILN Model Application Including Organic N Uptake |
title_sort | nitrogen cycling in a norway spruce plantation in denmark a soiln model application including organic n uptake |
url | http://dx.doi.org/10.1100/tsw.2001.394 |
work_keys_str_mv | AT clausbeier nitrogencyclinginanorwayspruceplantationindenmarkasoilnmodelapplicationincludingorganicnuptake AT henrikeckersten nitrogencyclinginanorwayspruceplantationindenmarkasoilnmodelapplicationincludingorganicnuptake AT pergundersen nitrogencyclinginanorwayspruceplantationindenmarkasoilnmodelapplicationincludingorganicnuptake |