Digital twins as self-models for intelligent structures

Abstract A self-model is an artificial intelligence that is able to create a continuously updated internal representation of itself. In this paper we use an agent-based architecture to create a ‘digital twin self-model’, using the example of a small-scale three-story building. The architecture is ba...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoxue Shen, David J. Wagg, Matthew Tipuric, Matthew S. Bonney
Format: Article
Language:English
Published: Nature Portfolio 2025-08-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-14347-8
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract A self-model is an artificial intelligence that is able to create a continuously updated internal representation of itself. In this paper we use an agent-based architecture to create a ‘digital twin self-model’, using the example of a small-scale three-story building. The architecture is based on a set of heterogeneous digital components, each managed by an agent. The agents can be orchestrated to perform a specific workflow, or collaborate with a human user to perform requested tasks. The digital twin architecture enables multiple complex behaviors to be represented via a time-evolving dynamic assembly of the digital components, that also includes the encoding of a self-model in a knowledge graph as well as producing quantitative outputs. Four operational modes are defined for the digital twin and the example shown here demonstrates an offline mode that executes a predefined workflow with five agents. The digital twin has an information management system which is coordinated using a dynamic knowledge graph that encodes the self-model. Users can visualize the knowledge graph via a web-based user interface and also input natural language queries. Retrieval augmented generation is used to give a response to the queries using both the local knowledge graph and a large language model.
ISSN:2045-2322