Basic stochastic models for viral infection within a host

Stochastic differential equation (SDE) models are formulated for intra-host virus-cell dynamics during the early stages of viral infection, prior to activation of the immune system. The SDE models incorporate more realism into the mechanisms for viral entry and release than ordinary differential e...

Full description

Saved in:
Bibliographic Details
Main Authors: Sukhitha W. Vidurupola, Linda J. S. Allen
Format: Article
Language:English
Published: AIMS Press 2012-09-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2012.9.915
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stochastic differential equation (SDE) models are formulated for intra-host virus-cell dynamics during the early stages of viral infection, prior to activation of the immune system. The SDE models incorporate more realism into the mechanisms for viral entry and release than ordinary differential equation (ODE) models and show distinct differences from the ODE models. The variability in the SDE models depends on the concentration, with much greater variability for small concentrations than large concentrations. In addition, the SDE models show significant variability in the timing of the viral peak. The viral peak is earlier for viruses that are released from infected cells via bursting rather than via budding from the cell membrane.
ISSN:1551-0018