On Coefficient Inequalities for Functions of Symmetric Starlike Related to a Petal-Shaped Domain
The research on coefficient inequalities in various classes of univalent holomorphic functions focuses on interpreting their coefficients through the coefficients associated with Carathéodory functions. Therefore, researchers can investigate the behavior of coefficient functionals by applying the kn...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/14/3/165 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The research on coefficient inequalities in various classes of univalent holomorphic functions focuses on interpreting their coefficients through the coefficients associated with Carathéodory functions. Therefore, researchers can investigate the behavior of coefficient functionals by applying the known inequalities for Carathéodory functions. This study will explore various coefficient inequalities employing the techniques developed for the previously discussed family of functions. These coefficient inequalities include the Krushkal, Zalcman, and Fekete-Szegö inequalities, along with the second and third Hankel determinants. The class of symmetric starlike functions linked with a petal-shaped domain is the primary focus of our study. |
|---|---|
| ISSN: | 2075-1680 |