Some Curvature Conditions on a Para-Sasakian Manifold with Canonical Paracontact Connection
We study canonical paracontact connection on a para-Sasakian manifold. We prove that a Ricci-flat para-Sasakian manifold with respect to canonical paracontact connection is an η-Einstein manifold. We also investigate some properties of curvature tensor, conformal curvature tensor, W2-curvature tenso...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2012/395462 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study canonical paracontact connection on a para-Sasakian manifold. We prove that a Ricci-flat para-Sasakian manifold with respect to canonical paracontact connection is an η-Einstein manifold. We also investigate some properties of curvature tensor, conformal curvature tensor, W2-curvature tensor, concircular curvature tensor, projective curvature tensor, and pseudo-projective curvature tensor with respect to canonical paracontact connection on a para-Sasakian manifold. It is shown that a concircularly flat para-Sasakian manifold with respect to canonical paracontact connection is of constant scalar curvature. We give some characterizations for pseudo-projectively flat para-Sasakian manifolds. |
---|---|
ISSN: | 0161-1712 1687-0425 |