Effects of spatial structure and diffusion on the performances of the chemostat

Given hydric capacity and nutrient flow of a chemostat-like system, we analyse the influence of a spatial structure on the output concentrations at steady-state. Three configurations are compared: perfectly-mixed, serial and parallel with diffusion rate. We show the existence of a threshold on the i...

Full description

Saved in:
Bibliographic Details
Main Authors: Ihab Haidar, Alain Rapaport, Frédéric Gérard
Format: Article
Language:English
Published: AIMS Press 2011-07-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2011.8.953
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given hydric capacity and nutrient flow of a chemostat-like system, we analyse the influence of a spatial structure on the output concentrations at steady-state. Three configurations are compared: perfectly-mixed, serial and parallel with diffusion rate. We show the existence of a threshold on the input concentration of nutrient for which the benefits of the serial and parallel configurations over the perfectly-mixed one are reversed. In addition, we show that the dependency of the output concentrations on the diffusion rate can be non-monotonic, and give precise conditions for the diffusion effect to be advantageous. The study encompasses dead-zone models.
ISSN:1551-0018