A Metaheuristic Approach to Detecting and Mitigating DDoS Attacks in Blockchain-Integrated Deep Learning Models for IoT Applications
The Internet of Things (IoT) is a developing technology and its range of applications is satisfying among numerous consumers, as it makes everything very simple. As a concern of its huge evolution, privacy, and security are vital problems where IoT devices are always susceptible to cyberattacks. To...
Saved in:
Main Author: | Manal Alkhammash |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10804803/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Federated Learning for Decentralized DDoS Attack Detection in IoT Networks
by: Yaser Alhasawi, et al.
Published: (2024-01-01) -
An Enhanced LSTM Approach for Detecting IoT-Based DDoS Attacks Using Honeypot Data
by: Arjun Kumar Bose Arnob, et al.
Published: (2025-02-01) -
Deep learning-driven defense strategies for mitigating DDoS attacks in cloud computing environments
by: Doaa Mohsin Abd Ali Afraji, et al.
Published: (2025-12-01) -
Comprehensive Analysis of DDoS Anomaly Detection in Software-Defined Networks
by: Abdinasir Hirsi, et al.
Published: (2025-01-01) -
TCN-Based DDoS Detection and Mitigation in 5G Healthcare-IoT: A Frequency Monitoring and Dynamic Threshold Approach
by: Mirza Akhi, et al.
Published: (2025-01-01)