Monotonicities of Quasi-Normed Orlicz Spaces
In this paper, we introduce a new Orlicz function, namely a <i>b</i>-Orlicz function, which is not necessarily convex. The Orlicz spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi&g...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-10-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/13/10/696 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we introduce a new Orlicz function, namely a <i>b</i>-Orlicz function, which is not necessarily convex. The Orlicz spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>Φ</mo></msup></semantics></math></inline-formula> generated by the <i>b</i>-Orlicz function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Φ</mo></semantics></math></inline-formula> equipped with a Luxemburg quasi-norm contain both classical spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mi>p</mi></msup><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>≥</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mi>p</mi></msup><mrow><mo stretchy="false">(</mo><mn>0</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. The Orlicz spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>Φ</mo></msup></semantics></math></inline-formula> are quasi-Banach spaces. Some basic properties in quasi-normed Orlicz spaces are discussed, and the criteria that a quasi-normed Orlicz space is strictly monotonic and lower (upper) locally uniformly monotonic are given. |
|---|---|
| ISSN: | 2075-1680 |