The Hovering Stability of the Egretta Tail-Sitter VTOL UAV

Vertical takeoff and landing (VTOL) capability has extended the application of unmanned aerial vehicle (UAV) significantly. In this paper, simulation modeling and flight test were employed to investigate the hovering stability of a tail-sitter UAV named Egretta. The hovering stability simulation mod...

Full description

Saved in:
Bibliographic Details
Main Authors: Hao Wang, Shanfei Su, Xizhi Qiu, Yu Liang, Peng Yu, Xiaowen Shan
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2022/9534180
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vertical takeoff and landing (VTOL) capability has extended the application of unmanned aerial vehicle (UAV) significantly. In this paper, simulation modeling and flight test were employed to investigate the hovering stability of a tail-sitter UAV named Egretta. The hovering stability simulation model was developed based on a simplified rigid body flight dynamic and the time-averaged propeller slipstream flow distribution. Meanwhile, a testing vehicle with PID controllers was built and tested to verify the hovering stability model. It was found that the Egretta UAV can achieve stable hovering in the roll, pitch, and yaw directions. The simulation model has demonstrated accuracy in predicting the hovering stability and dynamic responses with large perturbations in both trend and magnitude. Moreover, the simulation model can be extended to analyze the hovering stability of tail-sitter UAVs with different sizes. The simulation model will be very useful for initial stability sizing and PID optimization investigation.
ISSN:1687-5974