Power Flow and Voltage Control Strategies in Hybrid AC/DC Microgrids for EV Charging and Renewable Integration

This study outlines the creation and lab verification of a low-voltage direct current (LVDC) back-to-back (B2B) converter intended as a versatile connection point for low-voltage users. The converter configuration features dual inverters that regulate the power distribution to AC loads and grid conn...

Full description

Saved in:
Bibliographic Details
Main Authors: Zaid H. Ali, David Raisz
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:World Electric Vehicle Journal
Subjects:
Online Access:https://www.mdpi.com/2032-6653/16/2/104
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study outlines the creation and lab verification of a low-voltage direct current (LVDC) back-to-back (B2B) converter intended as a versatile connection point for low-voltage users. The converter configuration features dual inverters that regulate the power distribution to AC loads and grid connections through a shared DC circuit. This arrangement enables the integration of various DC generation sources, such as photovoltaic systems, as well as DC consumers, like electric vehicle chargers, supported by DC/DC converters. Significant advancements include sensorless current estimation for grid-forming inverters, which removes the necessity for conventional current sensors by employing mathematical models and established system parameters. The experimental findings validate the system’s effectiveness in grid-connected and isolated microgrid modes, demonstrating its ability to sustain energy quality and system stability under different conditions. Our results highlight the considerable potential of integrating grid-forming functionalities in inverters to improve microgrid operations.
ISSN:2032-6653