A 3-D Magnetometer-Aided Low-Field Electromagnetic Tracking System for Clinical Surgery Applications
Magnetic field distortions caused by metal objects or other magnetic materials interferes with the accuracy of high-field electromagnetic (EM) tracking systems. Additionally, the effective range of the EM field or the working volume may be limited. In this study, a low-power generator and magnetic s...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/11009017/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Magnetic field distortions caused by metal objects or other magnetic materials interferes with the accuracy of high-field electromagnetic (EM) tracking systems. Additionally, the effective range of the EM field or the working volume may be limited. In this study, a low-power generator and magnetic sensors exhibiting high-performance are introduced as a substitute for high-field electromagnetic tracking systems. To generate magnetic field gradients that uniquely encode each spatial point, magnetic fields are varied over three locations. These gradients are detected using millimeter-sized sensors with quality resolution, and are able to measure their local magnetic fields with accuracy. The sensors are integrated into surgical instruments (e.g. catheters and brain electrodes). By utilizing a low-field generator and low power consumption, the incorporation of electromagnetic systems in surgical rooms is significantly improved. Using advanced 3D-axis magnetoresistive sensors, the system achieves a mean absolute error of 3 mm at a distance of 42 cm from the field generator, thereby enabling precise and orientation-independent spatial encoding. Following sensor calibration procedure, localization along the Z-axis showed substantial improvement. The developed low-field EM tracking system, which does not require a line of sight is ideal for real-time navigation in complex clinical environments. |
|---|---|
| ISSN: | 2169-3536 |