A Quintic Spline-Based Computational Method for Solving Singularly Perturbed Periodic Boundary Value Problems

This work aims to provide approximate solutions for singularly perturbed problems with periodic boundary conditions using quintic B-splines and collocation. The well-known Shishkin mesh strategy is applied for mesh construction. Convergence analysis demonstrates that the method achieves parameter-un...

Full description

Saved in:
Bibliographic Details
Main Authors: Puvaneswari Arumugam, Valanarasu Thynesh, Chandru Muthusamy, Higinio Ramos
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/73
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589124284973056
author Puvaneswari Arumugam
Valanarasu Thynesh
Chandru Muthusamy
Higinio Ramos
author_facet Puvaneswari Arumugam
Valanarasu Thynesh
Chandru Muthusamy
Higinio Ramos
author_sort Puvaneswari Arumugam
collection DOAJ
description This work aims to provide approximate solutions for singularly perturbed problems with periodic boundary conditions using quintic B-splines and collocation. The well-known Shishkin mesh strategy is applied for mesh construction. Convergence analysis demonstrates that the method achieves parameter-uniform convergence with fourth-order accuracy in the maximum norm. Numerical examples are presented to validate the theoretical estimates. Additionally, the standard hybrid finite difference scheme, a cubic spline scheme, and the proposed method are compared to demonstrate the effectiveness of the present approach.
format Article
id doaj-art-78d3b8a91c6944af9b757d1585766f07
institution Kabale University
issn 2075-1680
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-78d3b8a91c6944af9b757d1585766f072025-01-24T13:22:20ZengMDPI AGAxioms2075-16802025-01-011417310.3390/axioms14010073A Quintic Spline-Based Computational Method for Solving Singularly Perturbed Periodic Boundary Value ProblemsPuvaneswari Arumugam0Valanarasu Thynesh1Chandru Muthusamy2Higinio Ramos3Department of Mathematics, University College of Engineering, Anna University, Tiruchirappalli 620024, Tamilnadu, IndiaDepartment of Mathematics, CDOE, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, IndiaDepartment of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, IndiaDepartment of Applied Mathematics, Scientific Computing Group, University of Salamanca, Plaza de la Merced, 37008 Salamanca, SpainThis work aims to provide approximate solutions for singularly perturbed problems with periodic boundary conditions using quintic B-splines and collocation. The well-known Shishkin mesh strategy is applied for mesh construction. Convergence analysis demonstrates that the method achieves parameter-uniform convergence with fourth-order accuracy in the maximum norm. Numerical examples are presented to validate the theoretical estimates. Additionally, the standard hybrid finite difference scheme, a cubic spline scheme, and the proposed method are compared to demonstrate the effectiveness of the present approach.https://www.mdpi.com/2075-1680/14/1/73singular perturbationperiodical boundary conditionsparameter-uniform convergencecollocation pointsquintic B-splines
spellingShingle Puvaneswari Arumugam
Valanarasu Thynesh
Chandru Muthusamy
Higinio Ramos
A Quintic Spline-Based Computational Method for Solving Singularly Perturbed Periodic Boundary Value Problems
Axioms
singular perturbation
periodical boundary conditions
parameter-uniform convergence
collocation points
quintic B-splines
title A Quintic Spline-Based Computational Method for Solving Singularly Perturbed Periodic Boundary Value Problems
title_full A Quintic Spline-Based Computational Method for Solving Singularly Perturbed Periodic Boundary Value Problems
title_fullStr A Quintic Spline-Based Computational Method for Solving Singularly Perturbed Periodic Boundary Value Problems
title_full_unstemmed A Quintic Spline-Based Computational Method for Solving Singularly Perturbed Periodic Boundary Value Problems
title_short A Quintic Spline-Based Computational Method for Solving Singularly Perturbed Periodic Boundary Value Problems
title_sort quintic spline based computational method for solving singularly perturbed periodic boundary value problems
topic singular perturbation
periodical boundary conditions
parameter-uniform convergence
collocation points
quintic B-splines
url https://www.mdpi.com/2075-1680/14/1/73
work_keys_str_mv AT puvaneswariarumugam aquinticsplinebasedcomputationalmethodforsolvingsingularlyperturbedperiodicboundaryvalueproblems
AT valanarasuthynesh aquinticsplinebasedcomputationalmethodforsolvingsingularlyperturbedperiodicboundaryvalueproblems
AT chandrumuthusamy aquinticsplinebasedcomputationalmethodforsolvingsingularlyperturbedperiodicboundaryvalueproblems
AT higinioramos aquinticsplinebasedcomputationalmethodforsolvingsingularlyperturbedperiodicboundaryvalueproblems
AT puvaneswariarumugam quinticsplinebasedcomputationalmethodforsolvingsingularlyperturbedperiodicboundaryvalueproblems
AT valanarasuthynesh quinticsplinebasedcomputationalmethodforsolvingsingularlyperturbedperiodicboundaryvalueproblems
AT chandrumuthusamy quinticsplinebasedcomputationalmethodforsolvingsingularlyperturbedperiodicboundaryvalueproblems
AT higinioramos quinticsplinebasedcomputationalmethodforsolvingsingularlyperturbedperiodicboundaryvalueproblems