ChatGPT and general-purpose AI count fruits in pictures surprisingly well without programming or training
General-purpose artificial intelligence (AI) can facilitate agricultural digitalization as many tools do not require coding. Yet, it remains unclear how well the emerging general-purpose AI technologies can perform object counting, which is a fundamental task in agricultural digitalization, in compa...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2024-12-01
|
| Series: | Smart Agricultural Technology |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2772375524002934 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | General-purpose artificial intelligence (AI) can facilitate agricultural digitalization as many tools do not require coding. Yet, it remains unclear how well the emerging general-purpose AI technologies can perform object counting, which is a fundamental task in agricultural digitalization, in comparison to the current standard practice. We show that ChatGPT (GPT4 V) demonstrated moderate performance in counting coffee cherries from images, while the T-Rex, foundation model for object counting, performed with high accuracy. Testing with a hundred images, we examined that ChatGPT can count cherries, and the performance improves with human feedback (R2 = 0.36 and 0.46, respectively). The T-Rex foundation model required only a few samples for training but outperformed YOLOv8, the conventional best practice model (R2 = 0.92 and 0.90, respectively). Obtaining the results with these models was 100x shorter than the conventional best practice. These results bring two surprises for deep learning users in applied domains: a foundation model can drastically save effort and achieve higher accuracy than a conventional approach, and ChatGPT can reveal a relatively good performance especially with guidance by providing some examples and feedback. No requirement for coding skills can impact education, outreach, and real-world implementation of generative AI for supporting farmers. |
|---|---|
| ISSN: | 2772-3755 |