The Exact Distribution of the Condition Number of Complex Random Matrices

Let Gm×n (m≥n) be a complex random matrix and W=Gm×nHGm×n which is the complex Wishart matrix. Let λ1>λ2>…>λn>0 and σ1>σ2>…>σn>0 denote the eigenvalues of the W and singular values of Gm×n, respectively. The 2-norm condition number of Gm×n is κ2Gm×n=λ1/λn=σ1/σn. In this paper...

Full description

Saved in:
Bibliographic Details
Main Authors: Lin Shi, Taibin Gan, Hong Zhu, Xianming Gu
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2013/729839
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832560394225319936
author Lin Shi
Taibin Gan
Hong Zhu
Xianming Gu
author_facet Lin Shi
Taibin Gan
Hong Zhu
Xianming Gu
author_sort Lin Shi
collection DOAJ
description Let Gm×n (m≥n) be a complex random matrix and W=Gm×nHGm×n which is the complex Wishart matrix. Let λ1>λ2>…>λn>0 and σ1>σ2>…>σn>0 denote the eigenvalues of the W and singular values of Gm×n, respectively. The 2-norm condition number of Gm×n is κ2Gm×n=λ1/λn=σ1/σn. In this paper, the exact distribution of the condition number of the complex Wishart matrices is derived. The distribution is expressed in terms of complex zonal polynomials.
format Article
id doaj-art-782d9785bc7d4e6b94544caa6ccb83ce
institution Kabale University
issn 1537-744X
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series The Scientific World Journal
spelling doaj-art-782d9785bc7d4e6b94544caa6ccb83ce2025-02-03T01:27:37ZengWileyThe Scientific World Journal1537-744X2013-01-01201310.1155/2013/729839729839The Exact Distribution of the Condition Number of Complex Random MatricesLin Shi0Taibin Gan1Hong Zhu2Xianming Gu3School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, ChinaSchool of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, ChinaSchool of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, ChinaSchool of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, ChinaLet Gm×n (m≥n) be a complex random matrix and W=Gm×nHGm×n which is the complex Wishart matrix. Let λ1>λ2>…>λn>0 and σ1>σ2>…>σn>0 denote the eigenvalues of the W and singular values of Gm×n, respectively. The 2-norm condition number of Gm×n is κ2Gm×n=λ1/λn=σ1/σn. In this paper, the exact distribution of the condition number of the complex Wishart matrices is derived. The distribution is expressed in terms of complex zonal polynomials.http://dx.doi.org/10.1155/2013/729839
spellingShingle Lin Shi
Taibin Gan
Hong Zhu
Xianming Gu
The Exact Distribution of the Condition Number of Complex Random Matrices
The Scientific World Journal
title The Exact Distribution of the Condition Number of Complex Random Matrices
title_full The Exact Distribution of the Condition Number of Complex Random Matrices
title_fullStr The Exact Distribution of the Condition Number of Complex Random Matrices
title_full_unstemmed The Exact Distribution of the Condition Number of Complex Random Matrices
title_short The Exact Distribution of the Condition Number of Complex Random Matrices
title_sort exact distribution of the condition number of complex random matrices
url http://dx.doi.org/10.1155/2013/729839
work_keys_str_mv AT linshi theexactdistributionoftheconditionnumberofcomplexrandommatrices
AT taibingan theexactdistributionoftheconditionnumberofcomplexrandommatrices
AT hongzhu theexactdistributionoftheconditionnumberofcomplexrandommatrices
AT xianminggu theexactdistributionoftheconditionnumberofcomplexrandommatrices
AT linshi exactdistributionoftheconditionnumberofcomplexrandommatrices
AT taibingan exactdistributionoftheconditionnumberofcomplexrandommatrices
AT hongzhu exactdistributionoftheconditionnumberofcomplexrandommatrices
AT xianminggu exactdistributionoftheconditionnumberofcomplexrandommatrices