Electronic Medical Record Entity Recognition via Machine Reading Comprehension and Biaffine

The entity recognition of Chinese electronic medical record is of great significance to medical decision-making. The main process of entity recognition is sequence tagging, which has problems such as nested entity and boundary prediction. In this paper, we proposed a NER method called Bert-MRC-Biaff...

Full description

Saved in:
Bibliographic Details
Main Authors: Jun Cao, Xian Zhou, Wangping Xiong, Ming Yang, Jianqiang Du, Yanyun Yang, Tianci Li
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2021/1640837
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The entity recognition of Chinese electronic medical record is of great significance to medical decision-making. The main process of entity recognition is sequence tagging, which has problems such as nested entity and boundary prediction. In this paper, we proposed a NER method called Bert-MRC-Biaffine, which formulates the NER as an MRC task. The approach of the machine reading comprehension framework is to introduce prior knowledge, the query about entities. The biaffine mechanism scores pair start and end tokens in a sentence so that the model is able to predict named entities accurately. The proposed method outperforms from the electronic medical record dataset, called CCKS2017 data, and the TCM dataset. We also remove components to evaluate the contribution of individual components of our model. Experiments on two datasets demonstrate the effectiveness of our model.
ISSN:1026-0226
1607-887X