Maximum power point tracking of photovoltaic module based on Particle Swarm Optimization enhanced with Quasi-Newton method.

Maximum Power Point Tracking (MPPT) is a promising technology for extracting peak power from single or multiple solar modules for improving Photovoltaic (PV) system performance and satisfying economic operation. The tracker should continuously follow the MPP of the PV module at all operating and wea...

Full description

Saved in:
Bibliographic Details
Main Authors: Montaser Abdelsattar, Hamdi Ali Mohamed, Mohamed A Ismeil, Ahmed A Zaki Diab
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0327542
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Maximum Power Point Tracking (MPPT) is a promising technology for extracting peak power from single or multiple solar modules for improving Photovoltaic (PV) system performance and satisfying economic operation. The tracker should continuously follow the MPP of the PV module at all operating and weather conditions. The Particle Swarm Optimization (PSO) algorithm represents a powerful optimal MPP tracker due to its simplicity and has enhanced greatest exploration characteristics. This article proposes a new technique based on PSO enhanced with Quasi-Newton local search for improving power quality while minimizing oscillation. This tracking process is making the MPPT comparable between high accuracy and fast tracking speed. MPPT proposal algorithm results are compared to the results of the hybrid PSO-P&O algorithm at different operating conditions. The proposed algorithm results show that MPP extraction has been done with a high-speed response and the best efficiency. Moreover, the PSO is enhanced with a Quasi-Newton (QN) local search method for tuning the optimal MPP.
ISSN:1932-6203