Experimental Investigations on Mechanical Properties of AZ31/Eggshell Particle-Based Magnesium Composites
Magnesium (AZ31) is an excellent choice for a bionic implant. To enhance biocompatibility, the hardest graphene nanoparticles were reinforced with biocompatible materials. In this paper, biocompatibility composite material is produced by stir-casting nanoshell particles reinforced with various weigh...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | Advances in Materials Science and Engineering |
Online Access: | http://dx.doi.org/10.1155/2022/4883764 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magnesium (AZ31) is an excellent choice for a bionic implant. To enhance biocompatibility, the hardest graphene nanoparticles were reinforced with biocompatible materials. In this paper, biocompatibility composite material is produced by stir-casting nanoshell particles reinforced with various weight percentages (0, 1, 2, 3, and 4 wt. percent) of AZ31 magnesium alloy. To understand the mechanical properties of the composite material, results of which are compared to the base alloy (AZ31) are used. The study mentioned how AZ31 magnesium alloy, reinforced with reinforcing particles, may be used to create implant-related human bone materials. Magnesium alloy reinforced with reinforcing particles is described in the study. |
---|---|
ISSN: | 1687-8442 |