Energy-Optimal 3D Path Planning for MAV with Motion Uncertainty
Practical applications of microaerial vehicle face significant challenges including imprecise localization, limited on-board energy, and motion uncertainty. This paper focuses on the latter two issues. The core of proposed energy-optimal path planning algorithm is an energy consumption model derivin...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2021/9994680 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Practical applications of microaerial vehicle face significant challenges including imprecise localization, limited on-board energy, and motion uncertainty. This paper focuses on the latter two issues. The core of proposed energy-optimal path planning algorithm is an energy consumption model deriving from real measurements of a specific quadrotor and utilizing a 2D Gaussian distribution function to simulate the uncertainty of random drift. Based on these two models, we formulate the optimal path traversing the 3D map with minimum energy consumption using a heuristic ant colony optimization. Multiple sets of contrast experiments demonstrate the effectiveness and efficiency of the proposed algorithm. |
---|---|
ISSN: | 1076-2787 1099-0526 |