Lightweight Authentication Protocol for Smart Grids: An Energy-Efficient Authentication Scheme for Resource-Limited Smart Meters

The limited resources available for Smart Meter (SM) devices on large-scale Smart Grid (SG) networks impose several constraints on SMs authentication. Currently, available authentication schemes are not suitable for this type of network. In particular, factors such as power and memory consumption im...

Full description

Saved in:
Bibliographic Details
Main Authors: Lewis Nkenyereye, Abhijeet Thakare, Priyanka Khataniar, Raju Imandi, Pavan Kumar B N
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/4/580
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The limited resources available for Smart Meter (SM) devices on large-scale Smart Grid (SG) networks impose several constraints on SMs authentication. Currently, available authentication schemes are not suitable for this type of network. In particular, factors such as power and memory consumption impact the protocol efficiency and the device lifetime. Furthermore, high computational complexity leads to scalability issues in real-world scenarios, wherein large SGs need to handle a huge number of requests coming at a high rate. In this paper, we propose a lightweight authentication protocol for Smart Grids (LAP-SG), a novel scheme accounting for real resource-constrained SM providing reduced computation power, memory requirements, communication overhead, and electricity consumption. We prove the security of LAP-SG using both informal security analysis and a formal security model. We further prove the security of LAP-SG by testing it using AVISPA and ProVerif tools, showing its security against all known attacks. To assess LAP-SG performance in a real-world scenario, we measure its performance using the configuration of the Atmel family of SM devices. When compared to the state of the art, LAP-SG attains three times Smaller computation cost, reduced communication costs (up to 400 bits), and nearly four times lower storage cost.
ISSN:2227-7390