A Quality Control Method Based on an Improved Kernel Regression Algorithm for Surface Air Temperature Observations

An improved kernel regression (IKR) method based on an adaptive algorithm and particle swarm optimization is proposed. Considering the limitations of current quality control methods in different regions and on multiple time scales, the kernel regression algorithm is applied to the quality control of...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoling Ye, Yajin Kan, Xiong Xiong, Yingchao Zhang, Xin Chen
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2020/6045492
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An improved kernel regression (IKR) method based on an adaptive algorithm and particle swarm optimization is proposed. Considering the limitations of current quality control methods in different regions and on multiple time scales, the kernel regression algorithm is applied to the quality control of surface air temperature observations. Observations of 12 reference stations in Jiangsu from 1961 to 2008 and of 14 regions in China from 2010 to 2014 were selected. The analysis of surface air temperature observations was performed in terms of the mean absolute error (MAE), root mean square error (RMSE), consistency indicator (IOA), and Nash–Sutcliffe model efficiency coefficient (NSC). The results indicate that compared with the traditional IDW and SRT methods, the IKR method has a high error detection rate. Furthermore, the IKR method achieves better predictions and fitting in the single-station and multistation regression experiments in Jiangsu and in the national multistation regression prediction experiment.
ISSN:1687-9309
1687-9317