Towards a spectrally multiplexed quantum repeater

Abstract Extended quantum networks are based on quantum repeaters that often rely on the distribution of entanglement in an efficient and heralded fashion over multiple network nodes. Many repeater architectures require multiplexed sources of entangled photon pairs, multiplexed quantum memories, and...

Full description

Saved in:
Bibliographic Details
Main Authors: Tanmoy Chakraborty, Antariksha Das, Hedser van Brug, Oriol Pietx-Casas, Peng-Cheng Wang, Gustavo Castro do Amaral, Anna L. Tchebotareva, Wolfgang Tittel
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:npj Quantum Information
Online Access:https://doi.org/10.1038/s41534-024-00946-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Extended quantum networks are based on quantum repeaters that often rely on the distribution of entanglement in an efficient and heralded fashion over multiple network nodes. Many repeater architectures require multiplexed sources of entangled photon pairs, multiplexed quantum memories, and photon detection that distinguishes between the multiplexed modes. Here we demonstrate the concurrent employment of (1) spectrally multiplexed cavity-enhanced spontaneous parametric down-conversion in a nonlinear crystal; (2) a virtually-imaged phased array that enables mapping of spectral modes onto distinct spatial modes for frequency-selective detection; and (3) a cryogenically-cooled Tm3+:LiNbO3 crystal that allows spectral filtering in an approach that anticipates its use as a spectrally-multiplexed quantum memory. Through coincidence measurements, we demonstrate quantum correlations between energy-correlated photon pairs and a strong reduction of the correlation strength between all other photons. This constitutes an important step towards a frequency-multiplexed quantum repeater.
ISSN:2056-6387