mmPrivPose3D: A dataset for pose estimation and gesture command recognition in human-robot collaboration using frequency modulated continuous wave 60Hhz RaDARMendeley Data
3D pose estimation and gesture command recognition are crucial for ensuring safety and improving human-robot interaction. While RGB-D cameras are commonly used for these tasks, they often raise privacy concerns due to their ability to capture detailed visual data of human operators. In contrast, usi...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-04-01
|
Series: | Data in Brief |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352340925000484 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 3D pose estimation and gesture command recognition are crucial for ensuring safety and improving human-robot interaction. While RGB-D cameras are commonly used for these tasks, they often raise privacy concerns due to their ability to capture detailed visual data of human operators. In contrast, using RaDAR sensors offers a privacy-preserving alternative, as they can output point-cloud data rather than images. We introduce mmPrivPose3D, a dataset of 3D RaDAR point-cloud data that captures human movements and gestures using a single IWR6843AOPEVM RaDAR sensor with a frequency of 10 Hz synchronized with 19 corresponding 3D skeleton keypoints as the ground truth. These keypoints were extracted from RGB-D images captured by an Intel RealSense camera recorded at 30 frames per second using the Nuitrack SDK, and labeled with gestures. The dataset was collected from n = 15 participants. Our dataset serves as a fundamental resource for developing machine learning algorithms to improve the accuracy of pose estimation and gesture recognition using RaDAR data. |
---|---|
ISSN: | 2352-3409 |