Construction of novel step-scheme TiO2-WO3 nanostructured heterojunction towards morphology-driven enhancement of photocatalytic hydrogen evolution
Photocatalytic hydrogen evolution driven via solar energy is an efficient and sustainable method for hydrogen synthesis. The use of titania (TiO2), an efficient photocatalyst in hydrogen generation, can be improved further by reducing the recombination rate of photoinduced charge carriers. In this c...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-07-01
|
| Series: | JCIS Open |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2666934X25000091 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Photocatalytic hydrogen evolution driven via solar energy is an efficient and sustainable method for hydrogen synthesis. The use of titania (TiO2), an efficient photocatalyst in hydrogen generation, can be improved further by reducing the recombination rate of photoinduced charge carriers. In this context, WO3 is a viable material to boost TiO2 photoefficiency. In the present study, 1D TiO2 nanotube/WO3 nanorod (TN-WR) Step-scheme (S-scheme) heterojunction was fabricated via a facile impregnation method. XRD studies confirmed the anatase phase of TiO2 and the monoclinic phase of WO3. Morphological studies revealed the 1D microstructure of the nanocomposite with a mesoporous surface. UV-DRS and PL profiles displayed a bathochromic shift in wavelength signifying the activation of the nanocomposite in the visible region. XPS studies indicated the generation of defective sites in TiO2 upon incorporation of WO3. Thus, the novel 1D TN-WR S-scheme heterojunction nanocomposite demonstrates a remarkably high photocatalytic hydrogen generation rate of 1761 μmol g−1h−1. In order to investigate the role of morphology in hydrogen evolution, TiO2/WO3 nanocomposites with spherical morphologies were considered for comparison. This study provides a novel insight into the design of semiconductor heterojunction photocatalysts for efficient hydrogen evolution while avoiding the use of noble metals. |
|---|---|
| ISSN: | 2666-934X |