OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts

Abstract Telomeres are hypersensitive to the formation of the common oxidative lesion 8-oxoguanine (8oxoG), which impacts telomere stability and function. OGG1 and MUTYH glycosylases initiate base excision repair (BER) to remove 8oxoG or prevent mutation. Here, we show OGG1 loss or inhibition, or MU...

Full description

Saved in:
Bibliographic Details
Main Authors: Mariarosaria De Rosa, Ryan P. Barnes, Ariana C. Detwiler, Prasanth R. Nyalapatla, Peter Wipf, Patricia L. Opresko
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55638-4
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832585573611601920
author Mariarosaria De Rosa
Ryan P. Barnes
Ariana C. Detwiler
Prasanth R. Nyalapatla
Peter Wipf
Patricia L. Opresko
author_facet Mariarosaria De Rosa
Ryan P. Barnes
Ariana C. Detwiler
Prasanth R. Nyalapatla
Peter Wipf
Patricia L. Opresko
author_sort Mariarosaria De Rosa
collection DOAJ
description Abstract Telomeres are hypersensitive to the formation of the common oxidative lesion 8-oxoguanine (8oxoG), which impacts telomere stability and function. OGG1 and MUTYH glycosylases initiate base excision repair (BER) to remove 8oxoG or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced premature senescence and associated proinflammatory responses, while loss of both glycosylases causes a near complete rescue in human fibroblasts. Glycosylase deficiency also suppresses 8oxoG-induced telomere fragility and dysfunction, indicating that downstream single-stranded break (SSB) repair intermediates impair telomere replication. Preventing BER initiation suppresses PARylation and confers resistance to the synergistic effects of PARP inhibitors on 8oxoG-induced senescence. However, OGG1 activity is essential for preserving cell growth after chronic telomeric 8oxoG formation, whereas MUTYH promotes senescence to prevent chromosomal instability from unrepaired damage. Our studies reveal that inefficient completion of 8oxoG BER at telomeres triggers cellular senescence via SSB intermediates which disrupt telomere function.
format Article
id doaj-art-75651e9879124ddab47e1d6925997ebe
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-75651e9879124ddab47e1d6925997ebe2025-01-26T12:42:15ZengNature PortfolioNature Communications2041-17232025-01-0116111810.1038/s41467-024-55638-4OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblastsMariarosaria De Rosa0Ryan P. Barnes1Ariana C. Detwiler2Prasanth R. Nyalapatla3Peter Wipf4Patricia L. Opresko5UPMC Hillman Cancer Center at the University of PittsburghUPMC Hillman Cancer Center at the University of PittsburghUPMC Hillman Cancer Center at the University of PittsburghDepartment of Chemistry, University of PittsburghUPMC Hillman Cancer Center at the University of PittsburghUPMC Hillman Cancer Center at the University of PittsburghAbstract Telomeres are hypersensitive to the formation of the common oxidative lesion 8-oxoguanine (8oxoG), which impacts telomere stability and function. OGG1 and MUTYH glycosylases initiate base excision repair (BER) to remove 8oxoG or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced premature senescence and associated proinflammatory responses, while loss of both glycosylases causes a near complete rescue in human fibroblasts. Glycosylase deficiency also suppresses 8oxoG-induced telomere fragility and dysfunction, indicating that downstream single-stranded break (SSB) repair intermediates impair telomere replication. Preventing BER initiation suppresses PARylation and confers resistance to the synergistic effects of PARP inhibitors on 8oxoG-induced senescence. However, OGG1 activity is essential for preserving cell growth after chronic telomeric 8oxoG formation, whereas MUTYH promotes senescence to prevent chromosomal instability from unrepaired damage. Our studies reveal that inefficient completion of 8oxoG BER at telomeres triggers cellular senescence via SSB intermediates which disrupt telomere function.https://doi.org/10.1038/s41467-024-55638-4
spellingShingle Mariarosaria De Rosa
Ryan P. Barnes
Ariana C. Detwiler
Prasanth R. Nyalapatla
Peter Wipf
Patricia L. Opresko
OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts
Nature Communications
title OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts
title_full OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts
title_fullStr OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts
title_full_unstemmed OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts
title_short OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts
title_sort ogg1 and mutyh repair activities promote telomeric 8 oxoguanine induced senescence in human fibroblasts
url https://doi.org/10.1038/s41467-024-55638-4
work_keys_str_mv AT mariarosariaderosa ogg1andmutyhrepairactivitiespromotetelomeric8oxoguanineinducedsenescenceinhumanfibroblasts
AT ryanpbarnes ogg1andmutyhrepairactivitiespromotetelomeric8oxoguanineinducedsenescenceinhumanfibroblasts
AT arianacdetwiler ogg1andmutyhrepairactivitiespromotetelomeric8oxoguanineinducedsenescenceinhumanfibroblasts
AT prasanthrnyalapatla ogg1andmutyhrepairactivitiespromotetelomeric8oxoguanineinducedsenescenceinhumanfibroblasts
AT peterwipf ogg1andmutyhrepairactivitiespromotetelomeric8oxoguanineinducedsenescenceinhumanfibroblasts
AT patricialopresko ogg1andmutyhrepairactivitiespromotetelomeric8oxoguanineinducedsenescenceinhumanfibroblasts